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8.1 Last Time: Stochastic Gradient Descent

Consider

min
x

1

m

m∑
i=1

fi(x).

Stochastic gradient descent or SGD: let x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇fik(x(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, . . . ,m} is chosen uniformly at random. Step sizes tk is chosen to be fixed and small, or
diminishing.

Compare to full gradient, which would use 1
m

∑m
i=1∇fi(x).

• Upside of SGD: much (potentially much, much) cheaper iterations, optimal for stochastic optimization.

• Downside of SGD: can be slow to converge, suboptimal for finite sum problems.

8.2 Lower Bounds in Linear Programs

Suppose we want to find lower bound on the optimal value in our convex problem, B ≤ minx f(x).

Example 8.1 Consider the following simple linear program

min
x,y

x+ y

subjec to x+ y ≥ 2

x, y ≥ 0

It is easy to see that the lower bound is B = 2, because one of the constraints is exactly the same as the
objective function.

Example 8.2 Suppose the linear program is

8-1
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min
x,y

x+ 3y

subjec to x+ y ≥ 2

x, y ≥ 0

x+ 3y ≥ 2

+ 2y ≥ 0

= x+ 3y ≥ 2

Lower bound B = 2.

Example 8.3 More generally, suppose the linear program is

min
x,y

px+ qy

subjec to x+ y ≥ 2

x, y ≥ 0

a+ b =p

a+ c =q

a, b, c ≥0

Lower bound B = 2a, for any a, b, c satisfying
above.

min
x,y

px+ qy

subjec to x+ y ≥ 2

x, y ≥ 0

Called primal LP.

max
a,b,c

2a

subject to a+ b = p

a+ c = q

a, b, c ≥ 0

Called dual LP.

Note that the number of dual variables is the number of primal constraints.

Example 8.4 Now let us see another linear programming problem

min
x,y

px+ qy

subjec to x ≥ 0

y ≤ 1

3x+ y = 2

Primal LP.

max
a,b,c

2c− b

subject to a+ 3c = p

− b+ c = q

a, b ≥ 0

Dual LP.

Note: in the dual problem, c is unconstrained.

We formulate the Duality for general form LP as following. Given c ∈ Rn, A ∈ Rm×n, b ∈ Rm, G ∈ Rr×n, h ∈
Rr:



Lecture 8: May 2 8-3

min
x

cTx

subjec to Ax = b

Gx ≤ h

Primal LP.

max
u,v

− bTu− hT v

subject to −ATu−GT v = c

v ≥ 0

Dual LP.

Observe that for any u and v ≥ 0 and x is primal feasible, we get

uT (Ax− b) + vT (Gx− h) ≤ 0⇒ (−ATu−GT v)Tx ≥ −bTu− hT v.

So if c = −ATu−GT v, we get a bound on primal optimal value.

8.3 Example: Max Flow and Min Cut Problems

Given a directed graph G = (V,E), define fij , (i, j) ∈ E as the flow from node i to j. Denote cij as
the capacity of the edge, which is the maximum amount of flow that one can push through that edge. In
addition, the flow going into the node has to be equal to the flow coming out of the node. That is true for
all nodes except for the source (s) and the sink (t) nodes. These constraints can be formulated as:

fij ≥0, (i, j) ∈ E
fij ≤cij , (i, j) ∈ E∑

(i,k)∈E

fik =
∑

(k,j)∈E

fkj , k ∈ V ⊂ {s, t}.

The max flow problem: find flow that maximizes total value of the flow from s to t, i.e., as an LP:

max
f∈R|E|

∑
(s,j)∈E

fsj

subject to 0 ≤ fij ≤ cij for all (i, j) ∈ E∑
(i,k)∈E

fik =
∑

(k,j)∈E

for all k ∈ V \ {s, t}

Follow the steps before, just flip the logic: Find the tightest upper bound of the objective by taking linear
combinations of the constraints, subject to the constraints from the primal objectives coefficients.

Dual LP of max flow: The dual problem is (minimize over b, x to get best upper bound)

min
b∈R|E|,x∈R|V |

∑
(i,j)∈E

bijcij

subject to bij + xj − xi ≥ 0 for all (i, j) ∈ E
b ≥ 0, xs = 1, xt = 0
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Suppose that at the solution, it just so happened that

xi ∈ {0, 1} for all i ∈ V.

Let A = {i : xi = 1}, B = {i : xi = 0}; note s ∈ A and t ∈ B. Then,

bij ≥ xi − xj for (i, j) ∈ E, b ≥ 0

imply that bij = 1 if i ∈ A and j ∈ B, and 0 otherwise. Moreover, the objective
∑

(i,j)∈E bijcij is the
capacity of cut defined by A,B.That is, we have shown that the dual is the LP relaxation of the min cut
problem:

min
b∈R|E|,x∈R|V |

∑
(i,j)∈E

bijcij

subject to bij ≥ xi − xj
bij , xi, xj ∈ {0, 1} for all i, j

Therefore, from what we have known so far, we have:

value of max flow ≤ optimal value for LP relaxed min cut ≤ capacity of min cut

A famous result called max flow min cut theorem : value of max flow through a network is exactly the
capacity of the min cut. Hence, we have all the equalities in the above equation. In particular, we get that
the primal LP and dual LP have exactly the same optimal values, a phenomenon called strong duality.

8.4 Another Perspective on LP Duality

Consider

min
x

cTx

subjec to Ax = b

Gx ≤ h

Primal LP.

max
u,v

− bTu− hT v

subject to −ATu−GT v = c

v ≥ 0

Dual LP.

For any u and v ≥ 0, and x primal feasible,

cTx ≥ cTx+ uT ∗ (Ax− b) + vT (Gx− h) := L(x, u, v),

and
f∗ ≥ min

x∈C
L(x, u, v) ≥ min

x
L(x, u, v) := g(u, v),

where C denotes primal feasible set and f∗ denotes the primal optimal value. In other words, g(u, v) is a

lower bound on f∗ for any u and v ≥ 0, g(u, v) =

{
−bTu− hT v if c = −ATu−GT v
−∞ otherwise
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Now we can maximize g(u, v) over u and v ≥ 0 to get the tightest bound, and this gives exactly the dual LP
as before. This last perspective is actually completely general and applies to arbitrary optimization problems
(even nonconvex ones).

8.5 Mixed Strategies for Matrix Games

Setup: two players, J and R, and a payout matrix P .

Game: if J chooses i and R choose j, then J must pay R amount Pij . Pij can be either positive or negative.
They use mixed strategies, i.e., each will first specify a probability distribution, and then

x :P(J choose i) = xi, i = 1, . . . ,m

y :P(R choose j) = yj , i = 1, . . . , n

The expected payout from J to R is then:

m∑
i=1

n∑
j=1

xiyjPij = xTPy.

• Universe 1: Now suppose that J will allow R to know his strategy x ahead of time. In this case, R will
choose y to maximize xTPy, which results in J paying off

max{xTPy : y ≥ 0, 1T y = 1} = max
i=1,...,n

(PTx)i

Js best strategy is then to choose his distribution x according to

min
x

max
i=1,...,n

(PTx)i

subject to x ≥ 0, 1Tx = 1

• Universe 2: If R allow J to know his strategy y beforehand. By the same logic, R’s best strategy is to
choose his distribution y according to

max
y

min
j=1,...,m

(Py)j

subject to y ≥ 0, 1T y = 1

Call Rs expected payout in first scenario f∗1 and expected payout in second scenario f∗2 . Because it is clearly
advantageous to know the other players strategy, f∗1 ≥ f∗2 But by Von Neummans minimax theorem: we
know that f∗1 = f∗2 .

Recast first problem as LP

max
x,t

t

subject to x ≥ 0, 1Tx = 1

PTx ≤ t

Now from the Lagrangian:

L(x, t, u, v, y) = t− uTx+ v(1− 1Tx) + yT (PTx− t1)
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and the Lagrange dual function

g(u, v) = min
x,t

L(x, t, u, v, y) =

{
v if 1− 1T y = 0, Py − u− v1 = 0

−∞ otherwise

Hence the dual problem, after eliminating slack variable u is

max
y,v

v

subject to y ≥ 0, 1T y = 1

Py ≥ v.

This is exactly the second problem, and therefore again we see that strong duality holds. In LPs, strong
duality holds unless both the primal and dual are infeasible.

8.6 Duality in General

Consider general minimization problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

lj(x) = 0, j = 1, . . . , r.

We introduce new variables u ∈ Rm and v ∈ Rr with u ≥ 0, and define the Lagrangian to be

L(x, u, v) = f(x) +

m∑
i=1

ui hi︸︷︷︸
≤0

+

r∑
j=1

vj lj(x)︸︷︷︸
=0

≤ f(x)

as illustrated in Figure 8.6.

Figure 8.1:
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Let C denote primal feasible set, f∗ denote primal optimal value. Minimizing L(x, u, v) over all x gives a
lower bound

f∗ ≥ min
x∈C

L(x, u, v) ≥ min
x
L(x, u, v) := g(u, v).

We call g(u, v) Lagrangian dual function, and it gives a lower bound on f∗ for any u ≥ 0 and v, called dual
feasible u, v. This is illustrated in Figure 8.1.

Figure 8.2:

Example 8.5 Consider quadratic program:

min
x

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0

where Q � 0. Lagrangian:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b).

Lagrange dual function

g(u, v) = min
x
L(x, u, v) = −1

2
(c− u+AT v)TQ−1(c− u+AT v)− bT v

For any u ≥ 0 and any v, this is lower a bound on primal optimal value f∗.

Example 8.6 Consider the same problem:

min
x

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0

but now Q � 0. Lagrangian:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b).
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Lagrange dual function

g(u, v) =

{
− 1

2 (c− u+AT v)TQ+(c− u+AT v)− bT v if c− u+AT v ⊥ null(Q)

−∞ otherwise

where Q+ denotes generalized inverse of Q. For any u ≥ 0, v, and c− u+AT v ⊥ null(Q), g(u, v) is lower
a nontrivial lower bound on f∗.

8.7 Weak Duality

The best lower bound is given by maximizing g(u, v) over all dual feasible, u, v yielding Lagrange dual
problem:

max
u,v

g(u, v)

subject to u ≥ 0

Key property, called weak duality: fi dual optimal value is g∗, then

f∗ ≥ g∗.

Note that this always holds even if primal problem is nonconvex.

Another key property: the dual problem is a convex optimization problem (as written, it is a concave
maximization problem). Again, this is always true, even when primal problem is not convex. By definition:

g(u, v) = min
x
{f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj lj(x)}

=−max
x
{−f(x)−

m∑
i=1

uihi(x)−
r∑
i=1

vj lj(x)},

i.e., g is concave in (u, v) and u ≥ 0 is a convex constraint, hence dual problem is a concave maximization
problem.

Weak duality
min
x∈H

max
y∈G

g(x, y) ≥ max
x∈H

min
y∈G

g(x, y)

always true, but when

• Von Neumann (1928) H,G are probabilites, g(x, y) = xTPy. Then strong duality holds.

• Sion (1952) H,G are convex, g(x, y) is quasi-convex in X, quasi-concave in y. Then strong duality
holds.

• Ky Fan (1958). g(x, y) convex-concave. H,G one of them is compact. Then strong duality holds.

Example 8.7 Define
f(x) = x4 − 50x2 + 100x,

minimize subject to constraint x ≥ −4.5. Dual function g can be derived explicitly, via closed-form equation
for roots of a cubic equation.

g(u) = min
i=1,2,3

{F 4
i (u)− 50F 2

i (u) + 100Fi(u)},
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where for i = 1, 2, 3,

Fi(u) =
−ai

12 · 21/3
(

432(100− u)− (4322(100− u)2)− 4 · 12003)1/2
)1/3

− 100 · 21/3 1(
432(100− u)− (4322(100− u)2 − 4 · 12002)1/2

)1/3 ,

and a1 = 1, a2 = (−1 + i
√

3)/2, a3 = (−1− i
√

3)/2 as plotted in Figure 8.2.

Figure 8.3: On the left, we compare the sample mean of optimal trajectories of (Xti)t0≤ti≤tN . The plot
on the right show the comparison of sample mean of trajectories of optimal control (αti)t0≤ti≤tN between
approach 1 and approach 2.
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8.8 Strong duality

Strong duality means that

f∗ = g∗.

Slater’s condition: if the primal is a convex problem (i.e., f and h1, . . . , hm are convex, l1, . . . , lr are affine),
and there exists at least one strictly feasible x ∈ Rn, meaning

h1(x) < 0, . . . , hm(x) < 0 and l1(x) = 0, . . . , lr(x) = 0

then strong duality holds.

For linear program: strong duality holds for an LP if it is feasible. Apply same logic to its dual LP. Strong
duality holds if it is feasible. Hence strong duality holds for LPs, except when both primal and dual are
infeasible.

Example 8.8 Given y ∈ {−1, 1}n, X ∈ Rn×p, rows x1, . . . , xn, recall the support vector machine
problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . , n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , n

Introducing dual variables v, w ≥ 0, we form the Lagrangian:

L(β, β0, ξ, v, w) =
1

2
‖β‖22 + C

n∑
i=1

ξi −
n∑
i=1

viξi +

n∑
i=1

wi(1− ξi − yi(xTi β + β0)).

Minimizing over β, β0, ξ gives Lagrange dual function:

g(v, w) =

{
− 1

2w
T X̃X̃Tw + 1Tw if w = C1− v, wT y = 0

−∞ otherwise

where X̃ = diag(y)X. Thus SVM dual problem, eliminating slack variable v, becomes

max
w
− 1

2
wT X̃X̃Tw + 1Tw

subject to 0 ≤ w ≤ C1, wT y = 0

We are able to check Slater’s condition is satisfied, and we have strong duality. Further, from study of SVMs,
might recall that at optimality

β = X̃Tw.

This is not a coincidence, as we will later revisit when learning about KKT conditions.
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8.9 Duality Gap

Given primal feasible x and dual feasible u, v, the quantity

f(x)− g(u, v)

is called the duality gap between x and u, v. Note that

f(x)− f∗ ≤ f(x)− g(u, v).

So if the duality gap is zero, then x is primal optimal (and similarly, u, v are dual optimal). From an
algorithmic viewpoint, it can provide a stopping criteria: if f(x)− g(u, v) ≤ ε, then we are guaranteed that
f(x)− f∗ ≤ ε.
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