Lecture 15 Propose-Test-Release

Yu-Xiang Wang
Logistics

• Please submit your HW2.

• The coding part should be pretty easy given my template.
 • Let me know if you run into troubles.

• HW3 will be light-weighted so you have time to work on your project.
Recap: Beyond worst-case noise in DP query release

- Global sensitivity

- Local sensitivity
 \[\text{LS}_q(x) = \max \left\{ q(x) - q(x') \mid x' \sim x \right\}. \]

- Smooth sensitivity
Recap: Admissible noise

Notation. For a subset S of \mathbb{R}^d, we write $S + \Delta$ for the set $\{z + \Delta \mid z \in S\}$, and $e^\lambda \cdot S$ for the set $\{e^\lambda \cdot z \mid z \in S\}$. We also write $a \pm b$ for the interval $[a-b, a+b]$.

Definition 2.5 (Admissible Noise Distribution). A probability distribution on \mathbb{R}^d, given by a density function h, is (α, β)-admissible (with respect to ℓ_1) if, for $\alpha = \alpha(\varepsilon, \delta)$, $\beta = \beta(\varepsilon, \delta)$, the following two conditions hold for all $\Delta \in \mathbb{R}^d$ and $\lambda \in \mathbb{R}$ satisfying $||\Delta||_1 \leq \alpha$ and $|\lambda| \leq \beta$, and for all measurable subsets $S \subseteq \mathbb{R}^d$:

- **Sliding Property:** $\Pr_{Z \sim h}[Z \in S] \leq e^{\frac{\delta}{2}} \cdot \Pr_{Z \sim h}[Z \in S + \Delta] + \frac{\delta}{2}$.
- **Dilation Property:** $\Pr_{Z \sim h}[Z \in S] \leq e^{\frac{\delta}{2}} \cdot \Pr_{Z \sim h}[Z \in e^\lambda \cdot S] + \frac{\delta}{2}$.

![Figure 1: Sliding and dilation for the Laplace distribution with p.d.f. $h(z) = \frac{1}{2}e^{-|z|}$, plotted as a solid line. The dotted lines plot the densities $h(z + 0.3)$ (left) and $e^{0.3}h(e^{0.3}z)$ (right).](image)

- Then $\mathcal{A}(x) = f(x) + \frac{S(x)}{\alpha} \cdot Z$ satisfies (ε, δ)-DP.
Recap: Summary of the noises that are known to work

• Cauchy distribution
• Student t-distribution
• Laplace-log-normal
• Uniform-log-normal
• Arcsinh-normal
• Gaussian
• Laplace
Recap: Laplace-log-normal noise and CDP

• Adding log-normal noise

\[Z = X \cdot e^{\sigma Y} \]

• X drawn from Laplace and Y from a standard Normal.

Proposition 3. Let \(f : X^n \rightarrow \mathbb{R} \) and let \(Z \leftarrow \text{LLN}(\sigma) \) for some \(\sigma > 0 \). Then, for all \(s, t > 0 \), the algorithm \(M(x) = f(x) + \frac{1}{s} \cdot S_f^t(x) \cdot Z \) guarantees \(\frac{1}{2} \varepsilon^2 \)-CDP for \(\varepsilon = \frac{t}{\sigma} + e^{3\sigma^2/2} s \).

This lecture

• Finish smooth sensitivity
 • Sketching the idea of the zCDP proof for Laplace log-normal.
 • Empirical results on truncated mean.

• Propose-Test-Release

• Easy-to-use recipes for PTR and examples
Reading materials

• Vadhan book Section 3.2 – 3.4

• Dwork and Lei “Differential Privacy and Robust Statistics”
 • Original paper for PTR.

 • A good example for deriving data—dependent DP algorithm
Concentrated DP analysis of Smoothed Sensitivity

• Adding log-normal noise

\[Z = X \cdot e^{\sigma Y} \]

• X drawn from Laplace and Y from a standard Normal.

Proposition 3. Let \(f : \mathcal{X}^n \to \mathbb{R} \) and let \(Z \leftarrow \text{LLN}(\sigma) \) for some \(\sigma > 0 \). Then, for all \(s, t > 0 \), the algorithm \(M(x) = f(x) + \frac{1}{s} \cdot S_f(x) \cdot Z \) guarantees \(\frac{1}{2} \varepsilon^2 \)-CDP for \(\varepsilon = t/\sigma + e^{3\sigma^2/2s} \).

Summary of the noises that are known to work

• Cauchy distribution
• Student t-distribution
• Laplace-log-normal
• Uniform-log-normal
• Arcsinh-normal
• Gaussian
• Laplace
Sketch of the proof for the Laplace-Log-Normal

• Let’s say for all neighboring datasets
 \[|f(x) - f(x')| \leq g(x) \quad \text{and} \quad e^{-t}g(x) \leq g(x') \leq e^{t}g(x). \]

• Algorithm: \(M(x) = f(x) + \frac{g(x)}{s} \cdot Z \quad \text{for} \quad Z \leftarrow \text{LLN}(\sigma). \)

• We have that \(D_\alpha (M(x) || M(x')) = D_\alpha \left(Z \left\| \frac{f(x') - f(x)}{g(x)} \cdot s + \frac{g(x')}{g(x)} \cdot Z \right\| \right). \)
Technical tools

• Group privacy for CDP:

Lemma 11. Let P, Q, R be probability distributions. Suppose $D_\alpha (P\|R) \leq a \cdot \alpha$ and $D_\alpha (R\|Q) \leq b \cdot \alpha$ for all $\alpha \in (1, \infty)$. Then, for all $\alpha \in (1, \infty)$,

$$D_\alpha (P\|Q) \leq \alpha \cdot (\sqrt{a} + \sqrt{b})^2 \leq 2\alpha \cdot (a + b).$$

• Decompose what we want to bound

$$D_\alpha (Z\|e^t Z + s)$$

$$D_\alpha (e^t Z + s\|Z)$$
Bounding the two parts separately

Lemma 19. Let $Z \leftarrow \text{LLN}(\sigma)$ for $\sigma > 0$. Let $t \in \mathbb{R}$ and $\alpha \in (1, \infty)$. Then

$$D_{\alpha} (Z \| e^t Z) \leq \frac{\alpha t^2}{2\sigma^2}.$$

• Proof:

$$D_{\alpha} (Z \| e^t Z) = D_{\alpha} (X e^{\sigma Y} \| X e^{\sigma Y + t}) \leq \sup_x D_{\alpha} (xe^{\sigma Y} \| xe^{\sigma Y + t}) \leq D_{\alpha} (\sigma Y \| \sigma Y + t).$$

Lemma 20. Let $Z \leftarrow \text{LLN}(\sigma)$ for $\sigma > 0$. Let $s \in \mathbb{R}$ and $\alpha \in (1, \infty)$. Then

$$D_{\alpha} (Z \| Z + s) \leq \min \left\{ \frac{1}{2} e^{3\sigma^2} s^2 \alpha, e^{\frac{3}{2} \sigma^2} s \right\}.$$

• Proof:
After estimating the mean (or location parameter) of a distribution, the next question is to estimate its error introduced by the trimming itself. We focus on mean squared error relative to the mean. That is, intuitively, the trimmed mean interpolates between the mean (the order statistic at index m) and the median (the order statistic at index $n/2$).

Definition 9

For the problem of mean estimation, we use the trimmed mean as our estimator.

$$trim_m(x) = \frac{x(m+1) + x(m+2) + \cdots + x(n-m)}{n-2m},$$

Truncation of Outputs:

Before we consider privatising the trimmed mean, we look at the variance of trimmed mean for various distributions as the trimming fraction is varied.

Figure 1: Variance of trimmed mean for various distributions

The smooth sensitivity framework (and the smoothed sensitivity is substantial!)

Further Applications

Truncation of Outputs:

Proof.

Lemma 14.

Next we turn to analyzing the smooth sensitivity of the trimmed mean with truncated inputs. Combining Proposition 13 and Lemma 14 with the distributions from Section 1.2 yields Theorem 6.

Drawbacks of Smooth Sensitivity

• Restricted to numerical valued outputs.

• Requires elaborate design of the noise, generally with a much heavier tail

• Does not generalize well to high-dimension

• Are there more flexible recipes for deriving data-dependent DP algorithms?
Example: Releasing reciprocal

• Let $f(D)$ be a counting query, define $g(D) = 1/f(D)$
 • What is the global and local sensitivity of $g(D)$?

• What is the smooth sensitivity of $g(D)$?

• Example: the prediction variance of linear regression on a new dataset
 • Useful for statistical inference / uncertainty quantification
Examples: Private Argmax

• Voting: Who won the election?

• Model selection: Which is the best performing model when evaluating on a private dataset?

• Netflix: What is the Top-k most-popular movie last week?
Release Stable Values \textbf{without} adding noise.

Define “Dist2Instability” function:

“Dist2Instability”:

1.

2.
The privacy analysis of “Dist2Instability”

• Case A:

• Case B:
Utility of “Dist2Instability”

• Perfect utility with high probability when “margin is large”

• No utility at all when the margin is small.

• Comparing to exponential mechanism
 • Homework 3 question.
Propose-Test-Release

1. Propose a bound on local-sensitivity

2. Test the validity of this bound
 \[\hat{d} = d(x, \{x' : LS_q(x') > \beta\}) + \text{Lap}(1/\varepsilon), \]

3. Release:

Proposition 3.2 (propose-test-release [33]). For every query \(q : X^n \to \mathbb{R} \) and \(\varepsilon, \delta, \beta \geq 0 \), the above algorithm is \((2\varepsilon, \delta)\)-differentially private.
The privacy analysis of PTR

• Case 1:

• Case 2:
Two remaining issues with PTR

1. How do I know what bound to propose?

2. Isn’t it still relying on local sensitivity and noise-adding? How does it help to go beyond releasing numerical queries?
How do I know what bound to propose? Privately releasing “a high probability bound” of local sensitivity.

• Example: Estimating the number of triangles in a graph under Edge Differential Privacy.

• Global sensitivity: n-2
• Local sensitivity: the max degree of G

• Private releasing local sensitivity?
Privacy analysis of the approach to release local sensitivity privately.

Lemma: Let $\tilde{\Delta}_f(D)$ satisfies ε-DP and

$$\mathbb{P} \left[\Delta_f(D) \geq \tilde{\Delta}_f(D) \right] \leq \delta$$

Then $f(D) + \text{Lap}(\tilde{\Delta}_f(D)/\varepsilon)$ satisfies $(2\varepsilon, \delta)$-DP.

Proof:

See a more general statement and proof in Appendix G.6 of this paper: https://sites.cs.ucsb.edu/~yuxiangw/docs/spectral_privatelda.pdf
Beyond local sensitivity / noise-adding approaches

• What happens when the output space is not numerical?

• How to design data-adaptive versions of posterior-sampling, or objective-perturbation, or NoisySGD rather than just noise adding?
Topic of the next (and final) lecture

- Beyond local sensitivity
 - Per-instance differential privacy
 - pDP to DP conversion

- Data-dependent algorithms in differentially private machine learning