
Homework 2: Statistical Foundations of Reinforcement
Learning (Spring 2021)

University of California, Santa Barbara

Assigned on April 26, 2020 (Monday)

Due at 11:59 pm on May 10, 2020 (Monday)

Notes:

• Be sure to read “Policy on Academic Integrity” on the course syllabus.

• There are [105 points] in this homework, and a bonus [30 points] .

• You need to submit your homework via Gradescope.

• Contract the instructor if you spot typos. Any updates or correction will be posted on the
course Announcements page and piazza, so check there occasionally.

0. Acknowledgment [0 points]

For each question in this HW, please list all your collaborators and reference materials (beyond
those specified on the website) that were used for this homework.

1. List of Collaborators List the names of all people you have collaborated with and for which
question(s).

2. List of Acknowledgements. If you find an assignment’s answer or use a another source
for help, acknowledge for which question and provide an appropriate citation (there is no
penalty, provided you include the acknowledgement). If not, then write “none”.

1 Balancing an inverted pendulum (25 Points + 10 Bonus)

Have you tried balancing a pen tip down on your palm? This is a very challenging problem
for our reflexes, but a relatively easy one for AI. In this problem, we will try using what we
learned to build an RL agent to learn a strategy for such a maneuver. For a similar example
of learning-to-control in practice, check out the physical implementation in this video: https:

//www.youtube.com/watch?v=hGSn9DyvZDU

(a) (5 Points) On your platform, set up OpenAI gym (https://gym.openai.com/). In most
platforms, you could get away with “pip install gym”.

Then use the provided code snippet to load a CS292 customized version of Cartpole. It is
now a finite horizon episodic RL problem with continuous states and discrete action. We will
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focus on learning a stationary policy, e.g., the policy chooses an action based only on the
immediate state observation.

What is the state (observation) space, action space in this environment? Implement a naive
policy that takes Action 0 if the angle of the rod is negative and Action 1 otherwise.

Implement a function that conducts on-policy evaluation of a given policy π. Run this naive
policy for 1000 episodes and report the mean and standard deviation of the (undiscounted)
total reward of each episode. (if you comment out env.render(), if will run more quickly.)

(b) (10 points) Discretize the state-space and action space. Implement Q-learning with ε-greedy
in the tabular case.

Using the provided “discretize state” function to discretize the observed continuous states into
a discrete states so we can model the environment as a tabular MDP.

Write two functions: 1. “Update Q” that update the Q value matrix according to the (infinite
horizon, tabular MDP version of) Q-learning update; 2. “policy’ which takes the observation
and select the greedy action according to a given Q-value function.

Run Q-learning with (ε-greedy exploration) for 400 episodes (we have provided some default
parameters on ε schedule, learning rate, and discounting parameter γ; feel free to tweak them
if they do not work well for your implementation).

Plot the expected reward of the greedy policy learned at Episode 0, 50, 100, ..., 400 (check-
points) using your on-policy evaluation function from Part (a).

(c) (10 points) Implement Q-learning with linear function approximation with the provided linear
state feature extractor φ(s) ∈ Rd.
The standard trick to convert state-feature extractor to a state-action feature extractor for
discrete actions is to output φ(s, a) = [φ(s)T ,0T ]T if a = 0 and φ(s, a) = [0T , φ(s)T ]T if a = 1
where 0 is an all zero column vector with the same length of φ(s).

Implement the Q-learning updates with linear Q-value function approximation as well as the
policy.

Plot the learning curve just like in Part (b).

(d) (Bonus 10 points) Replace the Q-learning in Part (b) and Part (c) with expected SARSA.
Compare the online average of the episode rewards with that of Q-learning as well as the
corresponding greedy-policy at the Episode checkpoints. Plot all four lines on the same
figure.

2 Arm Elimination: An alternative to UCB (30 Points + 20 Bonus
points)

In this question, we will study an alternative algorithm for multi-armed bandits, which works in
pre-defined batches.

Define a sequence εi = 2−i for i = 1, 2, 3, .... The algorithm proceeds in batches i = 1, 2, ....
Each Batch i receives a subset Ai ⊂ A sample each arm by Ni times (we will figure out what a
good choice of Ni is soon).
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Let Q̂ia =
∑Ni

j=1Ra,j

Ni
where Ra,j is the jth sample within the ith batch that uses Arm a. Then

we set

Ai+1 =

{
a ∈ Ai

∣∣∣∣ max
a′∈Ai

Q̂ia′ − Q̂ia ≤ 2εi

}
To say it differently, based on the outcome of Batch i, we elimination those Arms that are no

longer “contenders” for the optimal arm.

(* Notice that we will throw away all data from the previous batch, for the simplicity of the
analysis. )

(a) (5 Points) Given Ai and Ni, apply Hoeffding’s inequality to show that with probability 1−δi,
for all a ∈ Ai ∣∣∣Q̂ia −Q(a)

∣∣∣ ≤
√

log(2|Ai|
δi

)

2Ni
.

(Why don’t you need the Azuma-Hoeffding’s inequality in this case like in UCB?)

(b) (5 points) What is a good choice of N1, N2, ... such that we can show that with probability
1− δ,

sup
a∈Ai

∣∣∣Q̂ia −Q(a)
∣∣∣ ≤ εi

for all i = 1, 2, 3, 4, 5, ....

(Hint: the algorithm is supposed to be an any-time algorithm, i.e., we do not know the horizon
T ahead of time. So in order for the infinite sequence of δi to sum to δ, how should be design
δi as a function of i? We have seen this in the lecture.)

(c) (5 points) Under the (high probability) event above, what is the regret of Epoch i?

(d) (5 points) Show that the total regret of this algorithm is Õ(
√
kT ), where Õ hides the loga-

rithmic factors.

(e) (5 points) Show that the algorithm also satisfy the gap-dependent regret bound of Õ(
∑

a6=a∗
1

∆a
).

(f) (5 points) Let the switching cost be defined to be the total number of times you change your
actions throughout the T steps. What is the best switching cost (in Big O notation, without
hiding logarithmic factors) you can obtain with this algorithm?

(g) (Bonus 10 points) Consider the alternative algorithm without a pre-defined sequence of
batches, but rather go by a round-robin fashion throughout based on the remaining action
space At. Let

Q̂t(a) =
1

max{1, Nt(a)}

t−1∑
i=1

1(At = a)Rt.

where Nt(a) is the total number of times arm a was pulled within the first t− 1 steps.

Set A1 = A. We update At in every iteration by

At+1 =

{
a ∈ At

∣∣∣∣ max
a′∈At

Q̂t(a
′)− εt(a′)− (Q̂ta + εt(a)) ≤ 0

}
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Show that there are appropriate choices of εt(a) that your algorithm can choose so you obtain
qualitatively the same regret bound as before.

(Hint: Comparing to the standard batched arm-elimination algorithm, one of the challenges
is that we cannot naively apply the standard Hoeffding’s inequality any more.)

(h) (Bonus 10 points) What happens if, instead of round robin, you run a policy that chooses the
arms in At uniformly at random? How many times do you need to change the (stochastic)
policy in total?

3 Absorbing MDPs (50 points)

*Acknowledgment: This question is taken from Wen Sun and Sham Kakade .

Consider an infinite horizon discounted MDP M = {S,A, γ, r, P, s0}. Let us assume S and A

are discrete here, and r(s, a) ∈ [0, 1]. We will consider stationary policy π here, and recall dπ(s, a)
is the (normalized) state-action visitation of π under transition P , i.e.,

dπ(s, a) = (1− γ)

∞∑
h=0

γhPπh(s, a),

where Pπh(s, a) is the probability of π hitting (s, a) at time step h under model P starting at s0 at
h = 0.

Let us also assume that we are given a dataset {si, ai, s′i}Ni=1 that consists of N state-action-next
state triples, where s′i ∼ P (·|si, ai). Following what we did in the tabular UCBVI lecture, we will
define two statistics: N(s, a) =

∑N
i=1 1{si, ai = s, a} and N(s, a, s′) =

∑N
i=1 1{si, ai, s′i = s, a, s′},

and we define P̂ as:

P̂ (s′|s, a) =
N(s, a, s′)

N(s, a)
,∀s, a, s′.

For simplicity, let us assume N(s, a) ≥ 1 for all s, a. We define a known set K ⊂ S×A as follows:

K = {s, a ∈ S×A : N(s, a) ≥ k},

where k ∈ N+ is some pre-defined constant integer and let us think about k as some reasonably big
number. So from the lecture, we know that for any s, a ∈ K, we have a reasonably good estimate of
P̂ (·|s, a), i.e., we can formulate the following high-probability event: with probability at least 1− δ,
for all s, a ∈ K, (by a McDiarmid’s inequality argument) we have that:

∥∥∥P̂ (·|s, a)− P (·|s, a)
∥∥∥

1
≤
√
S ln(SA/δ)

k
, ∀s, a (1)

Again let’s think about k as a big number here, so that P̂ (·|s, a) is accurate for any pair s, a ∈ K

( In the generative model setting, K = S× A, but here some state-action pairs are not visited for
sufficiently many times). For now, let us just condition on the above inequality being true.

Of course, outside K, we cannot really guarantee a good accurate model. The question we want
to study here is that given the current data, how can we encourage the agent to visit unknown
state-action pairs?
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Let us build the following absorbing MDP structure. Let us define an absorbing state s† (note
that s† is some additional state we add to S). Let us define the following two absorbing MDPs.

P †(·|s, a) =

{
P (·|s, a) s, a ∈ K,

δs† s = s† or s, a 6∈ K,
, P̂ †(·|s, a) =

{
P̂ (·|s, a) s, a ∈ K,

δs† s = s† or s, a 6∈ K,

where δs† is a delta distribution that has probability 1 at s†. Namely, in both models, whenever
we hit a state-action pair not from K, we transit to s† immediately, and then we will just self-loop
at s† forever.

Let us define a reward function for both MDPs,

r†(s, a) =

{
r(s, a) s, a ∈ K,

1 s = s† or s, a 6∈ K.

At this stage, we have setup all things we want. Let’s see how we can use the absorbing structures
we constructed above.

3.1 Probabilities and State action Visitations (30 points)

Given a policy π, let us denote dπ
P †

(s, a) as the state-action visitation under P † and dπ(s, a) as the
state-action visitation under the true model P . We denote dπ

P †
(s) =

∑
a∈A d

π
P †

(s, a).

(a) (10 points) Prove that:

dπ(s, a) ≥ dπP †(s, a),∀s, a ∈ K.

(b) (10 points) Recall that for P †, we have an extra absorbing state s†. Prove that:

dπP †(s
†) =

γ

1− γ
∑

s,a∈(S×A)\K

dπP †(s, a),

where dπ
P †

(s†) =
∑

a d
π
P †

(s†, a)

(c) (10 points) Let us consider s, a ∈ (S×A) \K. Prove that:

dπP †(s, a) ≤ dπ(s, a).

Hint: Remember that M does not contain the state s†. That is ∀s, a ∈ S × A, P (s†|s, a) = 0. It
may be helpful to think about what kind of (s, a) an agent needs to be in for P †(s†|s, a) 6= 0.

3.2 Optimism from the Absorbing MDPs (10 points)

Let us consider an arbitary stationary stochastic policy π : S 7→ ∆(A). Denote V †,π as the policy
π’s expected discounted total reward under P † and r†. Prove the following inequality: for any π.

V †,π ≥ V π.

Namely we have found an upper bound of V π.
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3.3 Not Too Much Optimism (10 points)

Being optimism itself is not enough for efficient learning, after all, +∞ is always a valid upper
bound of V π. We want the gap between V †,π and V π not too big. Prove the following:

V †,π ≤ V π +
1

(1− γ)2

∑
s,a∈(S×A)\K

dπ(s, a),

i.e., the gap is upper bounded by the probability of π escaping the known set K.

Hint: first write V †,π and V π using the state-action distributions. Second, group state-action
pairs into three groups: the known, the unknown, and the additional s†. Reason each term, and
use the results you proved in Section 3.1.

Remark: So in summary, we have seen another approach of providing optimism: we construct
absorbing MDP where for any unknown state-action pair, we simply let it be absorbed into s† and
give the maximum possible reward one for the unknown state-action pair and s†. We also show
that the optimism gap is related to the probability of escaping the known set K. We will continue
in Homework 3 to see how this construction gives an a polynomial sample complexity exploration
algorithm in tabular MDPs.
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