
CS292F StatRL Lecture 10
Exploration in Linear MDPs

Instructor: Yu-Xiang Wang
Spring 2021

UC Santa Barbara

1

Recap: Lecture 9

• Exploration in Tabular MDPs
• Problem setup: Episodic Finite-H MDP with non-stationary

transitions.
• Regret definition

• UCB-VI (Azar et al., 2017)
• A model-based approach; requires estimating P.

• Ideas in the proof
• Concentration
• Optimism via exploration bonus in value iterations
• A few other tricks

2

This lecture: Exploration in
Reinforcement Learning
• Why is it challenging?
• The reward depends on both s, a
• Unlike the generative model setting, we cannot just

choose any s to explore.
• The data needs to be actively collected

• We will study
• Tabular MDP
• Linear MDPs
• Both in the finite horizon episodic setting.

3

Recap: episodic finite horizon MDPs
with non-stationary transitions
• Problem setup / notations
• MDP:

• Policy depends on time step

• Performance measure

4

Chapter 7

Linearly Parameterized MDPs

In this chapter, we consider learning and exploration in linearly parameterized MDPs—the linear MDP. Linear MDP
generalizes tabular MDPs into MDPs with potentially infinitely many state and action pairs.

This chapter follows largely follows the model and analysis first provided in [Jin et al., 2020].

7.1 Setting

We consider episodic finite horizon MDP with horizon H , M = {S,A, {rh}h, {Ph}h, H, s0}, where s0 is a fixed
initial state, rh : S ⇥A 7! [0, 1] and Ph : S ⇥A 7! �(S) are time-dependent reward function and transition kernel.
Note that for time-dependent finite horizon MDP, the optimal policy will be time-dependent as well. For simplicity, we
overload notations a bit and denote ⇡ = {⇡0, . . . ,⇡H�1}, where each ⇡h : S 7! A. We also denote V ⇡ := V ⇡

0 (s0),
i.e., the expected total reward of ⇡ starting at h = 0 and s0.

We define the learning protocol below. Learning happens in an episodic setting. Every episode k, learner first proposes
a policy ⇡k based on all the history information up to the end of episode k � 1. The learner then executes ⇡k in the
underlying MDP to generate a single trajectory ⌧k = {sk

h
, ak

h
}H�1
h=0 with ah = ⇡k

h
(sk

h
) and sk

h+1 ⇠ Ph(·|skh, akh). The
goal of the learner is to minimize the following cumulative regret over N episodes:

Regret := E
"
K�1X

k=0

⇣
V ? � V ⇡

k
⌘#

,

where the expectation is with respect to the randomness of the MDP environment and potentially the randomness of
the learner (i.e., the learner might make decisions in a randomized fashion).

7.1.1 Low-Rank MDPs and Linear MDPs

Note that here we do not assume S and A are finite anymore. Indeed in this note, both of them could be continuous.
Without any further structural assumption, the lower bounds we saw in the Generalization Lecture forbid us to get a
polynomially regret bound.

The structural assumption we make in this note is a linear structure in both reward and the transition.

Definition 7.1 (Linear MDPs). Consider transition {Ph} and {rh}h. A linear MDP has the following structures on rh

61

Chapter 7

Linearly Parameterized MDPs

In this chapter, we consider learning and exploration in linearly parameterized MDPs—the linear MDP. Linear MDP
generalizes tabular MDPs into MDPs with potentially infinitely many state and action pairs.

This chapter follows largely follows the model and analysis first provided in [Jin et al., 2020].

7.1 Setting

We consider episodic finite horizon MDP with horizon H , M = {S,A, {rh}h, {Ph}h, H, s0}, where s0 is a fixed
initial state, rh : S ⇥A 7! [0, 1] and Ph : S ⇥A 7! �(S) are time-dependent reward function and transition kernel.
Note that for time-dependent finite horizon MDP, the optimal policy will be time-dependent as well. For simplicity, we
overload notations a bit and denote ⇡ = {⇡0, . . . ,⇡H�1}, where each ⇡h : S 7! A. We also denote V ⇡ := V ⇡

0 (s0),
i.e., the expected total reward of ⇡ starting at h = 0 and s0.

We define the learning protocol below. Learning happens in an episodic setting. Every episode k, learner first proposes
a policy ⇡k based on all the history information up to the end of episode k � 1. The learner then executes ⇡k in the
underlying MDP to generate a single trajectory ⌧k = {sk

h
, ak

h
}H�1
h=0 with ah = ⇡k

h
(sk

h
) and sk

h+1 ⇠ Ph(·|skh, akh). The
goal of the learner is to minimize the following cumulative regret over N episodes:

Regret := E
"
K�1X

k=0

⇣
V ? � V ⇡

k
⌘#

,

where the expectation is with respect to the randomness of the MDP environment and potentially the randomness of
the learner (i.e., the learner might make decisions in a randomized fashion).

7.1.1 Low-Rank MDPs and Linear MDPs

Note that here we do not assume S and A are finite anymore. Indeed in this note, both of them could be continuous.
Without any further structural assumption, the lower bounds we saw in the Generalization Lecture forbid us to get a
polynomially regret bound.

The structural assumption we make in this note is a linear structure in both reward and the transition.

Definition 7.1 (Linear MDPs). Consider transition {Ph} and {rh}h. A linear MDP has the following structures on rh

61

Chapter 7

Linearly Parameterized MDPs

In this chapter, we consider learning and exploration in linearly parameterized MDPs—the linear MDP. Linear MDP
generalizes tabular MDPs into MDPs with potentially infinitely many state and action pairs.

This chapter follows largely follows the model and analysis first provided in [Jin et al., 2020].

7.1 Setting

We consider episodic finite horizon MDP with horizon H , M = {S,A, {rh}h, {Ph}h, H, s0}, where s0 is a fixed
initial state, rh : S ⇥A 7! [0, 1] and Ph : S ⇥A 7! �(S) are time-dependent reward function and transition kernel.
Note that for time-dependent finite horizon MDP, the optimal policy will be time-dependent as well. For simplicity, we
overload notations a bit and denote ⇡ = {⇡0, . . . ,⇡H�1}, where each ⇡h : S 7! A. We also denote V ⇡ := V ⇡

0 (s0),
i.e., the expected total reward of ⇡ starting at h = 0 and s0.

We define the learning protocol below. Learning happens in an episodic setting. Every episode k, learner first proposes
a policy ⇡k based on all the history information up to the end of episode k � 1. The learner then executes ⇡k in the
underlying MDP to generate a single trajectory ⌧k = {sk

h
, ak

h
}H�1
h=0 with ah = ⇡k

h
(sk

h
) and sk

h+1 ⇠ Ph(·|skh, akh). The
goal of the learner is to minimize the following cumulative regret over N episodes:

Regret := E
"
K�1X

k=0

⇣
V ? � V ⇡

k
⌘#

,

where the expectation is with respect to the randomness of the MDP environment and potentially the randomness of
the learner (i.e., the learner might make decisions in a randomized fashion).

7.1.1 Low-Rank MDPs and Linear MDPs

Note that here we do not assume S and A are finite anymore. Indeed in this note, both of them could be continuous.
Without any further structural assumption, the lower bounds we saw in the Generalization Lecture forbid us to get a
polynomially regret bound.

The structural assumption we make in this note is a linear structure in both reward and the transition.

Definition 7.1 (Linear MDPs). Consider transition {Ph} and {rh}h. A linear MDP has the following structures on rh

61

Recap: Linear function
approximation in TD-learning
• Why do we need it?
• Recall the PACMAN example.

• Describe the state by its features, and value functions
linear in features

5

How do we formally analyze this?

• What are the assumptions to make?
• Q*(s,a) approximately linear?

• Qπ(s,a) is approximately linear for all π?

• Q*(s,a) is exactly linear?

• Qπ(s,a) is exactly linear for all π?

6

Exponential sample complexity / regret lower bounds for the approximate case…

(Du, Kakade, Wang, Yang, 2019) Is a good representation sufficient for
sample efficient reinforcement learning?

Linear MDPs

• Exists feature map
• Such that:

• Implies a low-rank assumption in large-MDP case

7

and Ph:

rh(s, a) = ✓?
h
· �(s, a), Ph(·|s, a) = µ?

h
�(s, a), 8h

where � is a known state-action feature map � : S ⇥A 7! Rd, and µ?

h
2 R|S|⇥d. Here �, ✓?

h
are known to the learner,

while µ? is unknown. We further assume the following norm bound on the parameters: (1) sup
s,a

k�(s, a)k2 1, (2)
kv>µ?

h
k2

p
d for any v such that kvk1 1, and all h, and (3) k✓?

h
k2 W for all h. We assume rh(s, a) 2 [0, 1]

for all h and s, a.

The model essentially says that the transition matrix Ph 2 R|S|⇥|S||A| has rank at most d, and Ph = µ?

h
�. where

� 2 Rd⇥|S||A| and each column of � corresponds to �(s, a) for a pair s, a 2 S ⇥A.

Linear Algebra Notations For real-valued matrix A, we denote kAk2 = sup
x:kxk2=1 kAxk2 which denotes the

maximum singular value of A. We denote kAkF as the Frobenius norm kAk2
F

=
P

i,j
A2

i,j
where Ai,j denotes the

i, j’th entry of A. For any Positive Definite matrix ⇤, we denote x>⇤x = kxk2⇤. We denote det(A) as the determinant
of the matrix A. For a PD matrix ⇤, we note that det(⇤) =

Q
d

i=1 �i where �i is the eigenvalues of ⇤. For notation
simplicity, during inequality derivation, we will use .,h to suppress all absolute constants. We will use eO to suppress
all absolute constants and log terms.

7.2 Planning in Linear MDPs

We first study how to do value iteration in linear MDP if µ is given.

We start from Q?

H�1(s, a) = ✓?
H�1 · �(s, a), and ⇡?

H�1(s) = argmax
a
Q?

H�1(s, a) = argmax
a
✓?
H�1 · �(s, a), and

V ?

H�1(s) = argmax
a
Q?

H�1(s, a).

Now we do dynamic programming from h+ 1 to h:

Q?

h
(s, a) = ✓?

h
· �(s, a) + Es⇠Ph(·|s,a)V

?

h+1(s
0) = ✓?

h
· �(s, a) + Ph(·|s, a) · V ?

h+1 = ✓?
h
· �(s, a) + (µ?

h
�(s, a))>V ?

h+1

(0.1)

= �(s, a) ·
�
✓?
h
+ (µ?

h
)>V ?

h+1

�
= �(s, a) · wh, (0.2)

where we denote wh := ✓?
h
+ (µ?

h
)>V ?

h+1. Namely we see that Q?

h
(s, a) is a linear function with respect to �(s, a)!

We can continue by defining ⇡?

h
(s) = argmax

a
Q?

h
(s, a) and V ?

h
(s) = maxa Q?

h
(s, a).

At the end, we get a sequence of linear Q?, i.e., Q?

h
(s, a) = wh · �(s, a), and the optimal policy is also simple,

⇡?

h
(s) = argmax

a
wh · �(s, a), for all h = 0, . . . , H � 1.

One key property of linear MDP is that a Bellman Backup of any function f : S 7! R is a linear function with respect
to �(s, a). We summarize the key property in the following claim.

Claim 7.2. Consider any arbitrary function f : S 7! [0, H]. At any time step h 2 [0, . . . H � 1], there must exist a
w 2 Rd, such that, for all s, a 2 S ⇥A:

rh(s, a) + Ph(·|s, a) · f = w>�(s, a).

The proof of the above claim is essentially the Eq. 0.1.

62

and Ph:

rh(s, a) = ✓?
h
· �(s, a), Ph(·|s, a) = µ?

h
�(s, a), 8h

where � is a known state-action feature map � : S ⇥A 7! Rd, and µ?

h
2 R|S|⇥d. Here �, ✓?

h
are known to the learner,

while µ? is unknown. We further assume the following norm bound on the parameters: (1) sup
s,a

k�(s, a)k2 1, (2)
kv>µ?

h
k2

p
d for any v such that kvk1 1, and all h, and (3) k✓?

h
k2 W for all h. We assume rh(s, a) 2 [0, 1]

for all h and s, a.

The model essentially says that the transition matrix Ph 2 R|S|⇥|S||A| has rank at most d, and Ph = µ?

h
�. where

� 2 Rd⇥|S||A| and each column of � corresponds to �(s, a) for a pair s, a 2 S ⇥A.

Linear Algebra Notations For real-valued matrix A, we denote kAk2 = sup
x:kxk2=1 kAxk2 which denotes the

maximum singular value of A. We denote kAkF as the Frobenius norm kAk2
F

=
P

i,j
A2

i,j
where Ai,j denotes the

i, j’th entry of A. For any Positive Definite matrix ⇤, we denote x>⇤x = kxk2⇤. We denote det(A) as the determinant
of the matrix A. For a PD matrix ⇤, we note that det(⇤) =

Q
d

i=1 �i where �i is the eigenvalues of ⇤. For notation
simplicity, during inequality derivation, we will use .,h to suppress all absolute constants. We will use eO to suppress
all absolute constants and log terms.

7.2 Planning in Linear MDPs

We first study how to do value iteration in linear MDP if µ is given.

We start from Q?

H�1(s, a) = ✓?
H�1 · �(s, a), and ⇡?

H�1(s) = argmax
a
Q?

H�1(s, a) = argmax
a
✓?
H�1 · �(s, a), and

V ?

H�1(s) = argmax
a
Q?

H�1(s, a).

Now we do dynamic programming from h+ 1 to h:

Q?

h
(s, a) = ✓?

h
· �(s, a) + Es⇠Ph(·|s,a)V

?

h+1(s
0) = ✓?

h
· �(s, a) + Ph(·|s, a) · V ?

h+1 = ✓?
h
· �(s, a) + (µ?

h
�(s, a))>V ?

h+1

(0.1)

= �(s, a) ·
�
✓?
h
+ (µ?

h
)>V ?

h+1

�
= �(s, a) · wh, (0.2)

where we denote wh := ✓?
h
+ (µ?

h
)>V ?

h+1. Namely we see that Q?

h
(s, a) is a linear function with respect to �(s, a)!

We can continue by defining ⇡?

h
(s) = argmax

a
Q?

h
(s, a) and V ?

h
(s) = maxa Q?

h
(s, a).

At the end, we get a sequence of linear Q?, i.e., Q?

h
(s, a) = wh · �(s, a), and the optimal policy is also simple,

⇡?

h
(s) = argmax

a
wh · �(s, a), for all h = 0, . . . , H � 1.

One key property of linear MDP is that a Bellman Backup of any function f : S 7! R is a linear function with respect
to �(s, a). We summarize the key property in the following claim.

Claim 7.2. Consider any arbitrary function f : S 7! [0, H]. At any time step h 2 [0, . . . H � 1], there must exist a
w 2 Rd, such that, for all s, a 2 S ⇥A:

rh(s, a) + Ph(·|s, a) · f = w>�(s, a).

The proof of the above claim is essentially the Eq. 0.1.

62

(Jin et al., 2020) Provably efficient reinforcement learning with linear function approximation

Tabular MDPs are instances of
linear MDPs

• Choose d
• Feature map to be:

8

and Ph:

rh(s, a) = ✓?
h
· �(s, a), Ph(·|s, a) = µ?

h
�(s, a), 8h

where � is a known state-action feature map � : S ⇥A 7! Rd, and µ?

h
2 R|S|⇥d. Here �, ✓?

h
are known to the learner,

while µ? is unknown. We further assume the following norm bound on the parameters: (1) sup
s,a

k�(s, a)k2 1, (2)
kv>µ?

h
k2

p
d for any v such that kvk1 1, and all h, and (3) k✓?

h
k2 W for all h. We assume rh(s, a) 2 [0, 1]

for all h and s, a.

The model essentially says that the transition matrix Ph 2 R|S|⇥|S||A| has rank at most d, and Ph = µ?

h
�. where

� 2 Rd⇥|S||A| and each column of � corresponds to �(s, a) for a pair s, a 2 S ⇥A.

Linear Algebra Notations For real-valued matrix A, we denote kAk2 = sup
x:kxk2=1 kAxk2 which denotes the

maximum singular value of A. We denote kAkF as the Frobenius norm kAk2
F

=
P

i,j
A2

i,j
where Ai,j denotes the

i, j’th entry of A. For any Positive Definite matrix ⇤, we denote x>⇤x = kxk2⇤. We denote det(A) as the determinant
of the matrix A. For a PD matrix ⇤, we note that det(⇤) =

Q
d

i=1 �i where �i is the eigenvalues of ⇤. For notation
simplicity, during inequality derivation, we will use .,h to suppress all absolute constants. We will use eO to suppress
all absolute constants and log terms.

7.2 Planning in Linear MDPs

We first study how to do value iteration in linear MDP if µ is given.

We start from Q?

H�1(s, a) = ✓?
H�1 · �(s, a), and ⇡?

H�1(s) = argmax
a
Q?

H�1(s, a) = argmax
a
✓?
H�1 · �(s, a), and

V ?

H�1(s) = argmax
a
Q?

H�1(s, a).

Now we do dynamic programming from h+ 1 to h:

Q?

h
(s, a) = ✓?

h
· �(s, a) + Es⇠Ph(·|s,a)V

?

h+1(s
0) = ✓?

h
· �(s, a) + Ph(·|s, a) · V ?

h+1 = ✓?
h
· �(s, a) + (µ?

h
�(s, a))>V ?

h+1

(0.1)

= �(s, a) ·
�
✓?
h
+ (µ?

h
)>V ?

h+1

�
= �(s, a) · wh, (0.2)

where we denote wh := ✓?
h
+ (µ?

h
)>V ?

h+1. Namely we see that Q?

h
(s, a) is a linear function with respect to �(s, a)!

We can continue by defining ⇡?

h
(s) = argmax

a
Q?

h
(s, a) and V ?

h
(s) = maxa Q?

h
(s, a).

At the end, we get a sequence of linear Q?, i.e., Q?

h
(s, a) = wh · �(s, a), and the optimal policy is also simple,

⇡?

h
(s) = argmax

a
wh · �(s, a), for all h = 0, . . . , H � 1.

One key property of linear MDP is that a Bellman Backup of any function f : S 7! R is a linear function with respect
to �(s, a). We summarize the key property in the following claim.

Claim 7.2. Consider any arbitrary function f : S 7! [0, H]. At any time step h 2 [0, . . . H � 1], there must exist a
w 2 Rd, such that, for all s, a 2 S ⇥A:

rh(s, a) + Ph(·|s, a) · f = w>�(s, a).

The proof of the above claim is essentially the Eq. 0.1.

62

Linear MDPs imply that the Q
function for any policy is linear
• Optimal Q* function:

• Claim 7.2 (AJKS) For any function of the state, the
Bellman backup is a linear in the feature.

9

Recap: LinUCB in linear bandits

• In every round:
1. Use ridge regression to estimate the model

parameters

2. Construct an ellipsoidal confidence set of the
parameters

3. Choose actions that maximize UCB

10

The LinUCB algorithm: Optimism
in the Face of Uncertainty.
• Consider the ridge regression at each time t.

• Construct high probability confidence set of the
parameter vector

• Choose actions that maximize the UCB.

22

The LinUCB algorithm: Optimism
in the Face of Uncertainty.
• Consider the ridge regression at each time t.

• Construct high probability confidence set of the
parameter vector

• Choose actions that maximize the UCB.

22

Recap: The LinUCB algorithm:
Optimism in the Face of Uncertainty.
• Consider the ridge regression at each time t.

• Construct high probability confidence set of the
parameter vector

• Choose actions that maximize the UCB.

7

UCB-VI for Linear MDPs

• In every round:
1. Run Ridge regression for estimating the model

2. Construct the exploration bonuses

3. Run optimistic value iterations, and update greedy
policy

11

7.3 Learning Transition using Ridge Linear Regression

In this section, we consider the following simple question: given a dataset of state-action-next state tuples, how can
we learn the transition Ph for all h?

Note that µ? 2 R|S|⇥d. Hence explicitly writing down and storing the parameterization µ? takes time at least |S|. We
show that we can represent the model in a non-parametric way.

We consider a particular episode n. Similar to Tabular-UCBVI, we learn a model at the very beginning of the episode
n using all data from the previous episodes (episode 1 to the end of the episode n� 1). We denote such dataset as:

Dn

h
=
�
si
h
, ai

h
, si

h+1

 n�1

i=0
.

We maintain the following statistics using Dn

h
:

⇤n

h
=

n�1X

i=0

�(si
h
, ai

h
)�(si

h
, ai

h
)> + �I,

where � 2 R+ (it will be set to 1 eventually, but we keep it here for generality).

To get intuition of ⇤n, think about the tabular setting where �(s, a) is a one-hot vector (zeros everywhere except that
the entry corresponding to (s, a) is one). Then ⇤n

h
is a diagonal matrix and the diagonal entry contains Nn(s, a)—the

number of times (s, a) has been visited.

We consider the following multi-variate linear regression problem. Denote �(s) as a one-hot vector that has zero
everywhere except that the entry corresponding to s is one. Denote ✏i

h
= P (·|si

h
, ai

h
) � �(si

h+1). Conditioned on
history Hi

h
(history Hi

h
denotes all information from the very beginning of the learning process up to and including

(si
h
, ai

h
)), we have:

E
⇥
✏i
h
|Hi

h

⇤
= 0,

simply because si
h+1 is sampled from Ph(·|sih, aih) conditioned on (si

h
, ai

h
). Also note that k✏i

h
k1 2 for all h, i.

Since µ?

h
�(si

h
, ai

h
) = Ph(·|sih, aih), and �(si

h+1) is an unbiased estimate of Ph(·|sih, aih) conditioned on si
h
, ai

h
, it is

reasonable to learn µ? via regression from �(si
h
, ai

h
) to �(si

h+1). This leads us to the following ridge linear regression:

bµn

h
= argmin

µ2R|S|⇥d

n�1X

i=0

��µ�(si
h
, ai

h
)� �(si

h+1)
��2
2
+ �kµk2

F
.

Ridge linear regression has the following closed-form solution:

bµn

h
=

n�1X

i=0

�(si
h+1)�(s

i

h
, ai

h
)>(⇤n

h
)�1 (0.3)

Note that bµn

h
2 R|S|⇥d, so we never want to explicitly store it. Note that we will always use bµn

h
together with a specific

s, a pair and a value function V (think about value iteration case), i.e., we care about bPn

h
(·|s, a) ·V := (bµn

h
�(s, a)) ·V ,

which can be re-written as:

bPn

h
(·|s, a) · V := (bµn

h
�(s, a)) · V = �(s, a)>

n�1X

i=0

(⇤n

h
)�1�(si

h
, ai

h
)V (si

h+1),

63

7.3 Learning Transition using Ridge Linear Regression

In this section, we consider the following simple question: given a dataset of state-action-next state tuples, how can
we learn the transition Ph for all h?

Note that µ? 2 R|S|⇥d. Hence explicitly writing down and storing the parameterization µ? takes time at least |S|. We
show that we can represent the model in a non-parametric way.

We consider a particular episode n. Similar to Tabular-UCBVI, we learn a model at the very beginning of the episode
n using all data from the previous episodes (episode 1 to the end of the episode n� 1). We denote such dataset as:

Dn

h
=
�
si
h
, ai

h
, si

h+1

 n�1

i=0
.

We maintain the following statistics using Dn

h
:

⇤n

h
=

n�1X

i=0

�(si
h
, ai

h
)�(si

h
, ai

h
)> + �I,

where � 2 R+ (it will be set to 1 eventually, but we keep it here for generality).

To get intuition of ⇤n, think about the tabular setting where �(s, a) is a one-hot vector (zeros everywhere except that
the entry corresponding to (s, a) is one). Then ⇤n

h
is a diagonal matrix and the diagonal entry contains Nn(s, a)—the

number of times (s, a) has been visited.

We consider the following multi-variate linear regression problem. Denote �(s) as a one-hot vector that has zero
everywhere except that the entry corresponding to s is one. Denote ✏i

h
= P (·|si

h
, ai

h
) � �(si

h+1). Conditioned on
history Hi

h
(history Hi

h
denotes all information from the very beginning of the learning process up to and including

(si
h
, ai

h
)), we have:

E
⇥
✏i
h
|Hi

h

⇤
= 0,

simply because si
h+1 is sampled from Ph(·|sih, aih) conditioned on (si

h
, ai

h
). Also note that k✏i

h
k1 2 for all h, i.

Since µ?

h
�(si

h
, ai

h
) = Ph(·|sih, aih), and �(si

h+1) is an unbiased estimate of Ph(·|sih, aih) conditioned on si
h
, ai

h
, it is

reasonable to learn µ? via regression from �(si
h
, ai

h
) to �(si

h+1). This leads us to the following ridge linear regression:

bµn

h
= argmin

µ2R|S|⇥d

n�1X

i=0

��µ�(si
h
, ai

h
)� �(si

h+1)
��2
2
+ �kµk2

F
.

Ridge linear regression has the following closed-form solution:

bµn

h
=

n�1X

i=0

�(si
h+1)�(s

i

h
, ai

h
)>(⇤n

h
)�1 (0.3)

Note that bµn

h
2 R|S|⇥d, so we never want to explicitly store it. Note that we will always use bµn

h
together with a specific

s, a pair and a value function V (think about value iteration case), i.e., we care about bPn

h
(·|s, a) ·V := (bµn

h
�(s, a)) ·V ,

which can be re-written as:

bPn

h
(·|s, a) · V := (bµn

h
�(s, a)) · V = �(s, a)>

n�1X

i=0

(⇤n

h
)�1�(si

h
, ai

h
)V (si

h+1),

63

7.5 Algorithm

Our algorithm, Upper Confidence Bound Value Iteration (UCB-VI) will use reward bonus to ensure optimism. Specif-
ically, we will the following reward bonus, which is motivated from the reward bonus used in linear bandit:

bn
h
(s, a) = �

q
�(s, a)>(⇤n

h
)�1�(s, a), (0.7)

where � contains poly of H and d, and other constants and log terms. Again to gain intuition, please think about what
this bonus would look like when we specialize linear MDP to tabular MDP.

Algorithm 4 UCBVI for Linear MDPs
1: Input: parameters �,�
2: for n = 1 . . . N do
3: Compute bPn

h
for all h (Eq. 0.3)

4: Compute reward bonus bn
h

for all h (Eq. 0.7)
5: Run Value-Iteration on { bPn

h
, rh + bn

h
}H�1
h=0 (Eq. 0.8)

6: Set ⇡n as the returned policy of VI.
7: end for

With the above setup, now we describe the algorithm. Every episode n, we learn the model bµn

h
via ridge linear

regression. We then form the quadratic reward bonus as shown in Eq. 0.7. With that, we can perform the following
truncated Value Iteration (always truncate the Q function at H):

bV n

H
(s) = 0, 8s,

bQn

h
(s, a) = ✓? · �(s, a) + �

q
�(s, a)>(⇤n

h
)�1�(s, a) + �(s, a)>(bµn

h
)> bV n

h+1

= �
q
�(s, a)>(⇤n

h
)�1�(s, a) + (✓? + (bµn

h
)> bV n

h+1)
>�(s, a),

bV n

h
(s) = min{max

a

bQn

h
(s, a), H}, ⇡n

h
(s) = argmax

a
bQn

h
(s, a). (0.8)

Note that above bQn

h
contains two components: a quadratic component and a linear component. And bV n

h
has the format

of fw,�,⇤ defined in Eq. 0.5.

The following lemma bounds the norm of linear weights in bQn

h
.

Lemma 7.8. Assume � 2 [0, B]. For all n, h, we have bV n

h
is in the form of Eq. 0.5, and bV n

h
falls into the following

class:

V = {fw,�,⇤ : kwk2 W +
HN

�
,� 2 [0, B],�min(⇤) � �}. (0.9)

Proof: We just need to show that ✓? + (bµn

h
)> bV n

h+1 has its `2 norm bounded. This is easy to show as we always have
kbV n

h+1k1 H as we do truncation at Value Iteration:
���✓? + (bµn

h
)> bV n

h+1

���
2
 W +

���(bµn

h
)> bV n

h+1

���
2
.

Now we use the closed-form of bµn

h
from Eq. 0.3:

���(bµn

h
)> bV n

h+1

���
2
=

�����

n�1X

i=1

bV n

h+1(s
i

h+1)�(s
i

h
, ai

h
)>(⇤n

h
)�1

�����
2

 H

�����(⇤
n

h
)�1

n�1X

i=0

�(si
h
, ai

h
)

�����
2

 Hn

�
,

where we use the fact that kbV n

h+1k1 H , �max(⇤�1) 1/�, and sup
s,a

k�(s, a)k2 1.

68

Optimistic value iterations

12

7.5 Algorithm

Our algorithm, Upper Confidence Bound Value Iteration (UCB-VI) will use reward bonus to ensure optimism. Specif-
ically, we will the following reward bonus, which is motivated from the reward bonus used in linear bandit:

bn
h
(s, a) = �

q
�(s, a)>(⇤n

h
)�1�(s, a), (0.7)

where � contains poly of H and d, and other constants and log terms. Again to gain intuition, please think about what
this bonus would look like when we specialize linear MDP to tabular MDP.

Algorithm 4 UCBVI for Linear MDPs
1: Input: parameters �,�
2: for n = 1 . . . N do
3: Compute bPn

h
for all h (Eq. 0.3)

4: Compute reward bonus bn
h

for all h (Eq. 0.7)
5: Run Value-Iteration on { bPn

h
, rh + bn

h
}H�1
h=0 (Eq. 0.8)

6: Set ⇡n as the returned policy of VI.
7: end for

With the above setup, now we describe the algorithm. Every episode n, we learn the model bµn

h
via ridge linear

regression. We then form the quadratic reward bonus as shown in Eq. 0.7. With that, we can perform the following
truncated Value Iteration (always truncate the Q function at H):

bV n

H
(s) = 0, 8s,

bQn

h
(s, a) = ✓? · �(s, a) + �

q
�(s, a)>(⇤n

h
)�1�(s, a) + �(s, a)>(bµn

h
)> bV n

h+1

= �
q
�(s, a)>(⇤n

h
)�1�(s, a) + (✓? + (bµn

h
)> bV n

h+1)
>�(s, a),

bV n

h
(s) = min{max

a

bQn

h
(s, a), H}, ⇡n

h
(s) = argmax

a
bQn

h
(s, a). (0.8)

Note that above bQn

h
contains two components: a quadratic component and a linear component. And bV n

h
has the format

of fw,�,⇤ defined in Eq. 0.5.

The following lemma bounds the norm of linear weights in bQn

h
.

Lemma 7.8. Assume � 2 [0, B]. For all n, h, we have bV n

h
is in the form of Eq. 0.5, and bV n

h
falls into the following

class:

V = {fw,�,⇤ : kwk2 W +
HN

�
,� 2 [0, B],�min(⇤) � �}. (0.9)

Proof: We just need to show that ✓? + (bµn

h
)> bV n

h+1 has its `2 norm bounded. This is easy to show as we always have
kbV n

h+1k1 H as we do truncation at Value Iteration:
���✓? + (bµn

h
)> bV n

h+1

���
2
 W +

���(bµn

h
)> bV n

h+1

���
2
.

Now we use the closed-form of bµn

h
from Eq. 0.3:

���(bµn

h
)> bV n

h+1

���
2
=

�����

n�1X

i=1

bV n

h+1(s
i

h+1)�(s
i

h
, ai

h
)>(⇤n

h
)�1

�����
2

 H

�����(⇤
n

h
)�1

n�1X

i=0

�(si
h
, ai

h
)

�����
2

 Hn

�
,

where we use the fact that kbV n

h+1k1 H , �max(⇤�1) 1/�, and sup
s,a

k�(s, a)k2 1.

68

Regret bound

• Choose

• Regret

13

7.6 Analysis of UCBVI for Linear MDPs

In this section, we prove the following regret bound for UCBVI.

Theorem 7.9 (Regret Bound). Set � = eO (Hd), � = 1. UCBVI (Algorithm 4) achieves the following regret bound:

E
"
NV ? �

NX

i=0

V ⇡
n

#
 eO

⇣
H2

p
d3N

⌘

The main steps of the proof are similar to the main steps of UCBVI in tabular MDPs. We first prove optimism
via induction, and then we use optimism to upper bound per-episode regret. Finally we use simulation lemma to
decompose the per-episode regret.

In this section, to make notation simple, we set � = 1 directly.

7.6.1 Proving Optimism

Proving optimism requires us to first bound model error which we have built in the uniform convergence result shown
in Lemma 7.7, namely, the bound we get for (bPn

h
(·|s, a)�P (·|s, a)) · f for all f 2 V . Recall Lemma 7.7 but this time

replacing F by V defined in Eq. 0.9. With probability at least 1� �, for all n, h, s, a and for all f 2 V ,

���(bPn

h
(·|s, a)� P (·|s, a)) · f

��� H k�(s, a)k(⇤n

h
)�1

 r
ln

H

�
+
q

d ln(1 + 6(W +HN)
p
N) + d

q
ln(1 + 18B2

p
dN)

!

. Hd k�(s, a)k(⇤n

h
)�1

 r
ln

H

�
+
p
ln(WN +HN2) +

p
ln(B2dN)

!

. k�(s, a)k(⇤n

h
)�1 Hd

 r
ln

H

�
+
p
ln(W +H) +

p
lnB +

p
ln d+

p
lnN

!

| {z }
:=�

.

Denote the above inequality as event Emodel. Below we are going to condition on Emodel being hold. Note that here
for notation simplicity, we denote

� = Hd

 r
ln

H

�
+
p
ln(W +H) +

p
lnB +

p
ln d+

p
lnN

!
= eO (Hd) .

remark Note that in the definition of V (Eq. 0.9), we have � 2 [0, B]. And in the above formulation of �, note
that B appears inside a log term. So we need to set B such that � B and we can get the correct B by solving the
inequality � B for B.

Lemma 7.10 (Optimism). Assume event Emodel is true. for all n and h,

bV n

h
(s) � V ?

h
(s), 8s.

69

� =
<latexit sha1_base64="bGXofro/JcO2ancHuHmc+pnKjs8=">AAAB73icbZA9SwNBEIbn4leMX1FLm8UgWIU7EbQRgjaWEUwMJEfY28wlS/Y+3J0TQsifsLFQxNa/Y+e/cZNcoYkvLDy8M8POvEGqpCHX/XYKK6tr6xvFzdLW9s7uXnn/oGmSTAtsiEQluhVwg0rG2CBJClupRh4FCh+C4c20/vCE2sgkvqdRin7E+7EMpeBkrVYnQOLsinXLFbfqzsSWwcuhArnq3fJXp5eILMKYhOLGtD03JX/MNUmhcFLqZAZTLoa8j22LMY/Q+OPZvhN2Yp0eCxNtX0xs5v6eGPPImFEU2M6I08As1qbmf7V2RuGlP5ZxmhHGYv5RmClGCZsez3pSoyA1ssCFlnZXJgZcc0E2opINwVs8eRmaZ1XP8t15pXadx1GEIziGU/DgAmpwC3VogAAFz/AKb86j8+K8Ox/z1oKTzxzCHzmfP/aKjz8=</latexit><latexit sha1_base64="bGXofro/JcO2ancHuHmc+pnKjs8=">AAAB73icbZA9SwNBEIbn4leMX1FLm8UgWIU7EbQRgjaWEUwMJEfY28wlS/Y+3J0TQsifsLFQxNa/Y+e/cZNcoYkvLDy8M8POvEGqpCHX/XYKK6tr6xvFzdLW9s7uXnn/oGmSTAtsiEQluhVwg0rG2CBJClupRh4FCh+C4c20/vCE2sgkvqdRin7E+7EMpeBkrVYnQOLsinXLFbfqzsSWwcuhArnq3fJXp5eILMKYhOLGtD03JX/MNUmhcFLqZAZTLoa8j22LMY/Q+OPZvhN2Yp0eCxNtX0xs5v6eGPPImFEU2M6I08As1qbmf7V2RuGlP5ZxmhHGYv5RmClGCZsez3pSoyA1ssCFlnZXJgZcc0E2opINwVs8eRmaZ1XP8t15pXadx1GEIziGU/DgAmpwC3VogAAFz/AKb86j8+K8Ox/z1oKTzxzCHzmfP/aKjz8=</latexit><latexit sha1_base64="bGXofro/JcO2ancHuHmc+pnKjs8=">AAAB73icbZA9SwNBEIbn4leMX1FLm8UgWIU7EbQRgjaWEUwMJEfY28wlS/Y+3J0TQsifsLFQxNa/Y+e/cZNcoYkvLDy8M8POvEGqpCHX/XYKK6tr6xvFzdLW9s7uXnn/oGmSTAtsiEQluhVwg0rG2CBJClupRh4FCh+C4c20/vCE2sgkvqdRin7E+7EMpeBkrVYnQOLsinXLFbfqzsSWwcuhArnq3fJXp5eILMKYhOLGtD03JX/MNUmhcFLqZAZTLoa8j22LMY/Q+OPZvhN2Yp0eCxNtX0xs5v6eGPPImFEU2M6I08As1qbmf7V2RuGlP5ZxmhHGYv5RmClGCZsez3pSoyA1ssCFlnZXJgZcc0E2opINwVs8eRmaZ1XP8t15pXadx1GEIziGU/DgAmpwC3VogAAFz/AKb86j8+K8Ox/z1oKTzxzCHzmfP/aKjz8=</latexit><latexit sha1_base64="bGXofro/JcO2ancHuHmc+pnKjs8=">AAAB73icbZA9SwNBEIbn4leMX1FLm8UgWIU7EbQRgjaWEUwMJEfY28wlS/Y+3J0TQsifsLFQxNa/Y+e/cZNcoYkvLDy8M8POvEGqpCHX/XYKK6tr6xvFzdLW9s7uXnn/oGmSTAtsiEQluhVwg0rG2CBJClupRh4FCh+C4c20/vCE2sgkvqdRin7E+7EMpeBkrVYnQOLsinXLFbfqzsSWwcuhArnq3fJXp5eILMKYhOLGtD03JX/MNUmhcFLqZAZTLoa8j22LMY/Q+OPZvhN2Yp0eCxNtX0xs5v6eGPPImFEU2M6I08As1qbmf7V2RuGlP5ZxmhHGYv5RmClGCZsez3pSoyA1ssCFlnZXJgZcc0E2opINwVs8eRmaZ1XP8t15pXadx1GEIziGU/DgAmpwC3VogAAFz/AKb86j8+K8Ox/z1oKTzxzCHzmfP/aKjz8=</latexit>

� = 1
<latexit sha1_base64="XIdT8ol3tz4Y/WIDgszjcvM/KmM=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6EYounFZwT6gDWUymbRDJ5MwcyOU0M9w40IRt36NO//GaZuFth4YOJxzLnPvCVIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbZNkmvEWS2SiuwE1XArFWyhQ8m6qOY0DyTvB+G7md564NiJRjzhJuR/ToRKRYBSt1OtLGw0puSHeoFpz6+4cZJV4BalBgeag+tUPE5bFXCGT1Jie56bo51SjYJJPK/3M8JSyMR3ynqWKxtz4+XzlKTmzSkiiRNunkMzV3xM5jY2ZxIFNxhRHZtmbif95vQyjaz8XKs2QK7b4KMokwYTM7ieh0JyhnFhCmRZ2V8JGVFOGtqWKLcFbPnmVtC/qnuUPl7XGbVFHGU7gFM7BgytowD00oQUMEniGV3hz0Hlx3p2PRbTkFDPH8AfO5w/kSJBT</latexit><latexit sha1_base64="XIdT8ol3tz4Y/WIDgszjcvM/KmM=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6EYounFZwT6gDWUymbRDJ5MwcyOU0M9w40IRt36NO//GaZuFth4YOJxzLnPvCVIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbZNkmvEWS2SiuwE1XArFWyhQ8m6qOY0DyTvB+G7md564NiJRjzhJuR/ToRKRYBSt1OtLGw0puSHeoFpz6+4cZJV4BalBgeag+tUPE5bFXCGT1Jie56bo51SjYJJPK/3M8JSyMR3ynqWKxtz4+XzlKTmzSkiiRNunkMzV3xM5jY2ZxIFNxhRHZtmbif95vQyjaz8XKs2QK7b4KMokwYTM7ieh0JyhnFhCmRZ2V8JGVFOGtqWKLcFbPnmVtC/qnuUPl7XGbVFHGU7gFM7BgytowD00oQUMEniGV3hz0Hlx3p2PRbTkFDPH8AfO5w/kSJBT</latexit><latexit sha1_base64="XIdT8ol3tz4Y/WIDgszjcvM/KmM=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6EYounFZwT6gDWUymbRDJ5MwcyOU0M9w40IRt36NO//GaZuFth4YOJxzLnPvCVIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbZNkmvEWS2SiuwE1XArFWyhQ8m6qOY0DyTvB+G7md564NiJRjzhJuR/ToRKRYBSt1OtLGw0puSHeoFpz6+4cZJV4BalBgeag+tUPE5bFXCGT1Jie56bo51SjYJJPK/3M8JSyMR3ynqWKxtz4+XzlKTmzSkiiRNunkMzV3xM5jY2ZxIFNxhRHZtmbif95vQyjaz8XKs2QK7b4KMokwYTM7ieh0JyhnFhCmRZ2V8JGVFOGtqWKLcFbPnmVtC/qnuUPl7XGbVFHGU7gFM7BgytowD00oQUMEniGV3hz0Hlx3p2PRbTkFDPH8AfO5w/kSJBT</latexit><latexit sha1_base64="XIdT8ol3tz4Y/WIDgszjcvM/KmM=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6EYounFZwT6gDWUymbRDJ5MwcyOU0M9w40IRt36NO//GaZuFth4YOJxzLnPvCVIpDLrut1NaW9/Y3CpvV3Z29/YPqodHbZNkmvEWS2SiuwE1XArFWyhQ8m6qOY0DyTvB+G7md564NiJRjzhJuR/ToRKRYBSt1OtLGw0puSHeoFpz6+4cZJV4BalBgeag+tUPE5bFXCGT1Jie56bo51SjYJJPK/3M8JSyMR3ynqWKxtz4+XzlKTmzSkiiRNunkMzV3xM5jY2ZxIFNxhRHZtmbif95vQyjaz8XKs2QK7b4KMokwYTM7ieh0JyhnFhCmRZ2V8JGVFOGtqWKLcFbPnmVtC/qnuUPl7XGbVFHGU7gFM7BgytowD00oQUMEniGV3hz0Hlx3p2PRbTkFDPH8AfO5w/kSJBT</latexit>

Õ
⇣
H2

p
d3N

⌘

<latexit sha1_base64="qeyVMOixsnZL3wm4Vxcab7PL3H0=">AAACD3icbZC7SgNBFIZnvcZ4i1raDAYlNrKrgpZBm1QawVwgG8Ps7NlkcPbizFkhLHkDG1/FxkIRW1s738bJpVDjDwMf/zmHM+f3Eik02vaXNTM7N7+wmFvKL6+srq0XNjbrOk4VhxqPZayaHtMgRQQ1FCihmShgoSeh4d2eD+uNe1BaxNE19hNoh6wbiUBwhsbqFPZcFNKH7HLgSgiwRCs3h66+U5j5N0f0YuAq0e3hfqdQtA/skeg0OBMokomqncKn68c8DSFCLpnWLcdOsJ0xhYJLGOTdVEPC+C3rQstgxELQ7Wx0z4DuGsenQazMi5CO3J8TGQu17oee6QwZ9vTf2tD8r9ZKMThtZyJKUoSIjxcFqaQY02E41BcKOMq+AcaVMH+lvMcU42gizJsQnL8nT0P98MAxfHVcLJ9N4siRbbJDSsQhJ6RMKqRKaoSTB/JEXsir9Wg9W2/W+7h1xprMbJFfsj6+AUdEnCc=</latexit><latexit sha1_base64="qeyVMOixsnZL3wm4Vxcab7PL3H0=">AAACD3icbZC7SgNBFIZnvcZ4i1raDAYlNrKrgpZBm1QawVwgG8Ps7NlkcPbizFkhLHkDG1/FxkIRW1s738bJpVDjDwMf/zmHM+f3Eik02vaXNTM7N7+wmFvKL6+srq0XNjbrOk4VhxqPZayaHtMgRQQ1FCihmShgoSeh4d2eD+uNe1BaxNE19hNoh6wbiUBwhsbqFPZcFNKH7HLgSgiwRCs3h66+U5j5N0f0YuAq0e3hfqdQtA/skeg0OBMokomqncKn68c8DSFCLpnWLcdOsJ0xhYJLGOTdVEPC+C3rQstgxELQ7Wx0z4DuGsenQazMi5CO3J8TGQu17oee6QwZ9vTf2tD8r9ZKMThtZyJKUoSIjxcFqaQY02E41BcKOMq+AcaVMH+lvMcU42gizJsQnL8nT0P98MAxfHVcLJ9N4siRbbJDSsQhJ6RMKqRKaoSTB/JEXsir9Wg9W2/W+7h1xprMbJFfsj6+AUdEnCc=</latexit><latexit sha1_base64="qeyVMOixsnZL3wm4Vxcab7PL3H0=">AAACD3icbZC7SgNBFIZnvcZ4i1raDAYlNrKrgpZBm1QawVwgG8Ps7NlkcPbizFkhLHkDG1/FxkIRW1s738bJpVDjDwMf/zmHM+f3Eik02vaXNTM7N7+wmFvKL6+srq0XNjbrOk4VhxqPZayaHtMgRQQ1FCihmShgoSeh4d2eD+uNe1BaxNE19hNoh6wbiUBwhsbqFPZcFNKH7HLgSgiwRCs3h66+U5j5N0f0YuAq0e3hfqdQtA/skeg0OBMokomqncKn68c8DSFCLpnWLcdOsJ0xhYJLGOTdVEPC+C3rQstgxELQ7Wx0z4DuGsenQazMi5CO3J8TGQu17oee6QwZ9vTf2tD8r9ZKMThtZyJKUoSIjxcFqaQY02E41BcKOMq+AcaVMH+lvMcU42gizJsQnL8nT0P98MAxfHVcLJ9N4siRbbJDSsQhJ6RMKqRKaoSTB/JEXsir9Wg9W2/W+7h1xprMbJFfsj6+AUdEnCc=</latexit><latexit sha1_base64="qeyVMOixsnZL3wm4Vxcab7PL3H0=">AAACD3icbZC7SgNBFIZnvcZ4i1raDAYlNrKrgpZBm1QawVwgG8Ps7NlkcPbizFkhLHkDG1/FxkIRW1s738bJpVDjDwMf/zmHM+f3Eik02vaXNTM7N7+wmFvKL6+srq0XNjbrOk4VhxqPZayaHtMgRQQ1FCihmShgoSeh4d2eD+uNe1BaxNE19hNoh6wbiUBwhsbqFPZcFNKH7HLgSgiwRCs3h66+U5j5N0f0YuAq0e3hfqdQtA/skeg0OBMokomqncKn68c8DSFCLpnWLcdOsJ0xhYJLGOTdVEPC+C3rQstgxELQ7Wx0z4DuGsenQazMi5CO3J8TGQu17oee6QwZ9vTf2tD8r9ZKMThtZyJKUoSIjxcFqaQY02E41BcKOMq+AcaVMH+lvMcU42gizJsQnL8nT0P98MAxfHVcLJ9N4siRbbJDSsQhJ6RMKqRKaoSTB/JEXsir9Wg9W2/W+7h1xprMbJFfsj6+AUdEnCc=</latexit>

Sketch of the regret analysis

14

Sketch of the regret analysis

15

Sketch of the regret analysis

16

It remains to prove

• 1. Uniform convergence bound

• 2. “Optimism”

• 3. “Information gain” bound

17

The same argument as in the Linear Bandits case.
(Read Lemma 7.12 in AJKS)

The same induction argument as in the UCB-VI for tabular MDP
(Read Lemma 7.10 in AJKS)

“Optimism” from Optimistic Value
Iterations

18

Let us start with pointwise
convergence for a fixed V
• Recall: Hoeffding’s inequality + Union bound

• Recall: Redge regression

19

Error of ridge regression estimate

• Lemma 7.3 AJKS

• The quantity of interest is a inner product with this:

20

where we use the fact that �(s)>V = V (s). Thus the operator bPn

h
(·|s, a) · V simply requires storing all data and can

be computed via simple linear algebra and the computation complexity is simply poly(d, n)—no poly dependency on
|S|.

Let us calculate the difference between bµn

h
and µ?

h
.

Lemma 7.3 (Difference between bµh and µ?

h
). For all n and h, we must have:

bµn

h
� µ?

h
= ��µ?

h
(⇤n

h
)�1 +

n�1X

i=1

✏i
h
�(si

h
, ai

h
)> (⇤n

h
)�1 .

Proof: We start from the closed-form solution of bµn

h
:

bµn

h
=

n�1X

i=0

�(si
h+1)�(s

i

h
, ai

h
)>(⇤n

h
)�1 =

n�1X

i=0

(P (·|si
h
, ai

h
) + ✏n

h
)�(si

h
, ai

h
)>(⇤n

h
)�1

=
n�1X

i=0

(µ?

h
�(si

h
, ai

h
) + ✏i

h
)�(si

h
, ai

h
)>(⇤n

h
)�1 =

n�1X

i=0

µ⇤

h
�(si

h
, ai

h
)�(si

h
, ai

h
)>(⇤n

h
)�1 +

n�1X

i=0

✏i
h
�(si

h
, ai

h
)>(⇤n

h
)�1

=
n�1X

i=0

µ?

h
�(si

h
, ai

h
)�(si

h
, ai

h
)>(⇤n

h
)�1 +

n�1X

i=0

✏i
h
�(si

h
, ai

h
)>(⇤n

h
)�1

= µ?

h
(⇤n

h
� �I)(⇤n

h
)�1 +

n�1X

i=0

✏i
h
�(si

h
, ai

h
)>(⇤n

h
)�1 = µ⇤

h
� �µ?

h
(⇤n

h
)�1 +

n�1X

i=0

✏i
h
�(si

h
, ai

h
)>(⇤n

h
)�1.

Rearrange terms, we conclude the proof.

Lemma 7.4. Fix V : S 7! [0, H]. For all n and s, a 2 S ⇥A, and h, with probability at least 1� �, we have:
�����

n�1X

i=0

�(si
h
, ai

h
)(V >✏i

h
)

�����
(⇤n

h
)�1

 3H

r
ln

H det(⇤n

h
)1/2 det(�I)�1/2

�
.

Proof: We first check the noise terms {V >✏i
h
}h,i. Since V is independent of the data (it’s a pre-fixed function), and

by linear property of expectation, we have:

E
⇥
V >✏i

h
|Hi

h

⇤
= 0, |V >✏i

h
| kV k1k✏i

h
k1 2H, 8h, i.

Hence, this is a Martingale difference sequence. Using the Self-Normalized vector-valued Martingale Bound (Lemma A.5),
we have that for all n, with probability at least 1� �:

�����

n�1X

i=0

�(si
h
, ai

h
)(V >✏i

h
)

�����
(⇤n

h
)�1

 3H

r
ln

det(⇤n

h
)1/2 det(�I)�1/2

�
.

Apply union bound over all h 2 [H], we get that with probability at least 1� �, for all n, h:
�����

n�1X

i=0

�(si
h
, ai

h
)(V >✏i

h
)

�����
(⇤n

h
)�1

 3H

r
ln

H det(⇤n

h
)1/2 det(�I)�1/2

�
. (0.4)

64

Recap: Self-normalized Martingale
concentration bound.

21

Apply the above concentration

• How?

• This is a martingale difference sequence.

• Thus by the “Self-Normalized bound”:

22

where we use the fact that �(s)>V = V (s). Thus the operator bPn

h
(·|s, a) · V simply requires storing all data and can

be computed via simple linear algebra and the computation complexity is simply poly(d, n)—no poly dependency on
|S|.

Let us calculate the difference between bµn

h
and µ?

h
.

Lemma 7.3 (Difference between bµh and µ?

h
). For all n and h, we must have:

bµn

h
� µ?

h
= ��µ?

h
(⇤n

h
)�1 +

n�1X

i=1

✏i
h
�(si

h
, ai

h
)> (⇤n

h
)�1 .

Proof: We start from the closed-form solution of bµn

h
:

bµn

h
=

n�1X

i=0

�(si
h+1)�(s

i

h
, ai

h
)>(⇤n

h
)�1 =

n�1X

i=0

(P (·|si
h
, ai

h
) + ✏n

h
)�(si

h
, ai

h
)>(⇤n

h
)�1

=
n�1X

i=0

(µ?

h
�(si

h
, ai

h
) + ✏i

h
)�(si

h
, ai

h
)>(⇤n

h
)�1 =

n�1X

i=0

µ⇤

h
�(si

h
, ai

h
)�(si

h
, ai

h
)>(⇤n

h
)�1 +

n�1X

i=0

✏i
h
�(si

h
, ai

h
)>(⇤n

h
)�1

=
n�1X

i=0

µ?

h
�(si

h
, ai

h
)�(si

h
, ai

h
)>(⇤n

h
)�1 +

n�1X

i=0

✏i
h
�(si

h
, ai

h
)>(⇤n

h
)�1

= µ?

h
(⇤n

h
� �I)(⇤n

h
)�1 +

n�1X

i=0

✏i
h
�(si

h
, ai

h
)>(⇤n

h
)�1 = µ⇤

h
� �µ?

h
(⇤n

h
)�1 +

n�1X

i=0

✏i
h
�(si

h
, ai

h
)>(⇤n

h
)�1.

Rearrange terms, we conclude the proof.

Lemma 7.4. Fix V : S 7! [0, H]. For all n and s, a 2 S ⇥A, and h, with probability at least 1� �, we have:
�����

n�1X

i=0

�(si
h
, ai

h
)(V >✏i

h
)

�����
(⇤n

h
)�1

 3H

r
ln

H det(⇤n

h
)1/2 det(�I)�1/2

�
.

Proof: We first check the noise terms {V >✏i
h
}h,i. Since V is independent of the data (it’s a pre-fixed function), and

by linear property of expectation, we have:

E
⇥
V >✏i

h
|Hi

h

⇤
= 0, |V >✏i

h
| kV k1k✏i

h
k1 2H, 8h, i.

Hence, this is a Martingale difference sequence. Using the Self-Normalized vector-valued Martingale Bound (Lemma A.5),
we have that for all n, with probability at least 1� �:

�����

n�1X

i=0

�(si
h
, ai

h
)(V >✏i

h
)

�����
(⇤n

h
)�1

 3H

r
ln

det(⇤n

h
)1/2 det(�I)�1/2

�
.

Apply union bound over all h 2 [H], we get that with probability at least 1� �, for all n, h:
�����

n�1X

i=0

�(si
h
, ai

h
)(V >✏i

h
)

�����
(⇤n

h
)�1

 3H

r
ln

H det(⇤n

h
)1/2 det(�I)�1/2

�
. (0.4)

64

where we use the fact that �(s)>V = V (s). Thus the operator bPn

h
(·|s, a) · V simply requires storing all data and can

be computed via simple linear algebra and the computation complexity is simply poly(d, n)—no poly dependency on
|S|.

Let us calculate the difference between bµn

h
and µ?

h
.

Lemma 7.3 (Difference between bµh and µ?

h
). For all n and h, we must have:

bµn

h
� µ?

h
= ��µ?

h
(⇤n

h
)�1 +

n�1X

i=1

✏i
h
�(si

h
, ai

h
)> (⇤n

h
)�1 .

Proof: We start from the closed-form solution of bµn

h
:

bµn

h
=

n�1X

i=0

�(si
h+1)�(s

i

h
, ai

h
)>(⇤n

h
)�1 =

n�1X

i=0

(P (·|si
h
, ai

h
) + ✏n

h
)�(si

h
, ai

h
)>(⇤n

h
)�1

=
n�1X

i=0

(µ?

h
�(si

h
, ai

h
) + ✏i

h
)�(si

h
, ai

h
)>(⇤n

h
)�1 =

n�1X

i=0

µ⇤

h
�(si

h
, ai

h
)�(si

h
, ai

h
)>(⇤n

h
)�1 +

n�1X

i=0

✏i
h
�(si

h
, ai

h
)>(⇤n

h
)�1

=
n�1X

i=0

µ?

h
�(si

h
, ai

h
)�(si

h
, ai

h
)>(⇤n

h
)�1 +

n�1X

i=0

✏i
h
�(si

h
, ai

h
)>(⇤n

h
)�1

= µ?

h
(⇤n

h
� �I)(⇤n

h
)�1 +

n�1X

i=0

✏i
h
�(si

h
, ai

h
)>(⇤n

h
)�1 = µ⇤

h
� �µ?

h
(⇤n

h
)�1 +

n�1X

i=0

✏i
h
�(si

h
, ai

h
)>(⇤n

h
)�1.

Rearrange terms, we conclude the proof.

Lemma 7.4. Fix V : S 7! [0, H]. For all n and s, a 2 S ⇥A, and h, with probability at least 1� �, we have:
�����

n�1X

i=0

�(si
h
, ai

h
)(V >✏i

h
)

�����
(⇤n

h
)�1

 3H

r
ln

H det(⇤n

h
)1/2 det(�I)�1/2

�
.

Proof: We first check the noise terms {V >✏i
h
}h,i. Since V is independent of the data (it’s a pre-fixed function), and

by linear property of expectation, we have:

E
⇥
V >✏i

h
|Hi

h

⇤
= 0, |V >✏i

h
| kV k1k✏i

h
k1 2H, 8h, i.

Hence, this is a Martingale difference sequence. Using the Self-Normalized vector-valued Martingale Bound (Lemma A.5),
we have that for all n, with probability at least 1� �:

�����

n�1X

i=0

�(si
h
, ai

h
)(V >✏i

h
)

�����
(⇤n

h
)�1

 3H

r
ln

det(⇤n

h
)1/2 det(�I)�1/2

�
.

Apply union bound over all h 2 [H], we get that with probability at least 1� �, for all n, h:
�����

n�1X

i=0

�(si
h
, ai

h
)(V >✏i

h
)

�����
(⇤n

h
)�1

 3H

r
ln

H det(⇤n

h
)1/2 det(�I)�1/2

�
. (0.4)

64

Challenge: we cannot use union
bound because we have an infinite
number of value functions
• A covering number argument.

• Covering number: the number of balls with radius
ε that is needed to cover all points in a set.

23

Family of value functions we
consider

24

7.4 Uniform Convergence via Covering

Now we take a detour first and consider how to achieve a uniform convergence result over a function class F that
contains infinitely many functions. Previously we know how to get uniform convergence if F is finite—we simply do
a union bound. However, when F contains infinitely many functions, we cannot simply apply a union bound. We will
use the covering argument here.

Consider the following ball with radius R: ⇥ = {✓ 2 Rd : k✓k2 R 2 R+}. Fix an ✏. An ✏-net N✏ ⇢ ⇥ is a set
such that for any ✓ 2 ⇥, there exists a ✓0 2 N✏, such that k✓ � ✓0k2 ✏. We call the smallest ✏-net as ✏-cover. Abuse
notations a bit, we simply denote N✏ as the ✏-cover.

The ✏-covering number is the size of ✏-cover N✏. We define the covering dimension as ln (|N✏|)

Lemma 7.5. The ✏-covering number of the ball ⇥ = {✓ 2 Rd : k✓k2 R 2 R+} is upper bounded by (1 + 2R/✏)d.

We can extend the above definition to a function class. Specifically, we look at the following function. For a triple of
(w,�,⇤) where w 2 Rd and kwk2 L, � 2 [0, B], and ⇤ such that �min(⇤) � �, we define fw,�,⇤ : S 7! [0, R] as
follows:

fw,�,⇤(s) = min

⇢
max

a

✓
w>�(s, a) + �

q
�(s, a)>⇤�1�(s, a)

◆
, H

�
, 8s 2 S. (0.5)

We denote the function class F as:

F = {fw,�,⇤ : kwk2 L,� 2 [0, B],�min(⇤) � �}. (0.6)

Note that F contains infinitely many functions as the parameters are continuous. However we will show that it has
finite covering number that scales exponentially with respect to the number of parameters in (w,�,⇤).

Why do we look at F? As we will see later in this chapter F contains all possible bQh functions one could encounter
during the learning process.

Lemma 7.6 (✏-covering dimension of F). Consider F defined in Eq. 0.6. Denote its ✏-cover as N✏ with the `1 norm
as the distance metric, i.e., d(f1, f2) = kf1 � f2k1 for any f1, f2 2 F . We have that:

ln (|N✏|) d ln(1 + 6L/✏) + ln(1 + 6B/(
p
�✏)) + d2 ln(1 + 18B2

p
d/(�✏2)).

Note that the ✏-covering dimension scales quadratically with respect to d.

Proof: We start from building a net over the parameter space (w,�,⇤), and then we convert the net over parameter
space to an ✏-net over F under the `1 distance metric.

65

7.4 Uniform Convergence via Covering

Now we take a detour first and consider how to achieve a uniform convergence result over a function class F that
contains infinitely many functions. Previously we know how to get uniform convergence if F is finite—we simply do
a union bound. However, when F contains infinitely many functions, we cannot simply apply a union bound. We will
use the covering argument here.

Consider the following ball with radius R: ⇥ = {✓ 2 Rd : k✓k2 R 2 R+}. Fix an ✏. An ✏-net N✏ ⇢ ⇥ is a set
such that for any ✓ 2 ⇥, there exists a ✓0 2 N✏, such that k✓ � ✓0k2 ✏. We call the smallest ✏-net as ✏-cover. Abuse
notations a bit, we simply denote N✏ as the ✏-cover.

The ✏-covering number is the size of ✏-cover N✏. We define the covering dimension as ln (|N✏|)

Lemma 7.5. The ✏-covering number of the ball ⇥ = {✓ 2 Rd : k✓k2 R 2 R+} is upper bounded by (1 + 2R/✏)d.

We can extend the above definition to a function class. Specifically, we look at the following function. For a triple of
(w,�,⇤) where w 2 Rd and kwk2 L, � 2 [0, B], and ⇤ such that �min(⇤) � �, we define fw,�,⇤ : S 7! [0, R] as
follows:

fw,�,⇤(s) = min

⇢
max

a

✓
w>�(s, a) + �

q
�(s, a)>⇤�1�(s, a)

◆
, H

�
, 8s 2 S. (0.5)

We denote the function class F as:

F = {fw,�,⇤ : kwk2 L,� 2 [0, B],�min(⇤) � �}. (0.6)

Note that F contains infinitely many functions as the parameters are continuous. However we will show that it has
finite covering number that scales exponentially with respect to the number of parameters in (w,�,⇤).

Why do we look at F? As we will see later in this chapter F contains all possible bQh functions one could encounter
during the learning process.

Lemma 7.6 (✏-covering dimension of F). Consider F defined in Eq. 0.6. Denote its ✏-cover as N✏ with the `1 norm
as the distance metric, i.e., d(f1, f2) = kf1 � f2k1 for any f1, f2 2 F . We have that:

ln (|N✏|) d ln(1 + 6L/✏) + ln(1 + 6B/(
p
�✏)) + d2 ln(1 + 18B2

p
d/(�✏2)).

Note that the ✏-covering dimension scales quadratically with respect to d.

Proof: We start from building a net over the parameter space (w,�,⇤), and then we convert the net over parameter
space to an ✏-net over F under the `1 distance metric.

65

What is a finite set to cover this class such that for every f in this set, there is a
function in the finite set, such that they are ε-close in sup-norm?

Covering number calculations

25

From covering number to a
uniform convergence bound

26

