Finite-Horizon MDPs / Temporal Difference Learning

Instructor: Yu-Xiang Wang
Spring 2021
UC Santa Barbara
Homework 1 released; project ideas shared

• You will learn the various elements of MDPs by solving problems. Also you will practice using Hoeffding’s inequality and Bernstein’s inequality.

• Mostly similar to what I covered in the lectures / sometimes the solutions are readily available by reading the AJKS book.

• I shared a document with recent RL theory papers by categories.
 • You do NOT have to pick one from there
 • Application projects are just as welcome --- e.g., applying RL to your problem / formulate your problem as an MDP.
 • I am happy to discuss with you if you have some fresh ideas.
Recap: MDP planning with access to generative models

• Motivation:
 1. Solving MDP faster / approximately with randomized algs that sample
 2. Study sample complexity of RL with unknown transitions (without worrying about exploration)

• Algorithm of interest: Model-based plug-in estimator.
 • Sample all state-action pairs uniformly. Estimate the transition kernel.
 • Do VI / PI on the approximate MDP.
Recap: on a brief digression, we learned concentration inequalities.

- **Hoeffding’s inequality**
 \[|\bar{X} - \mathbb{E}[\bar{X}]| \leq \sqrt{\frac{B^2}{2n} \log(2/\delta)} \]

- **Bernstein inequality**
 \[|\bar{X} - \mathbb{E}[X_1]| \leq \sqrt{\frac{2\text{Var}[X_1]}{n} \log(2/\delta) + \frac{2M \log(2/\delta)}{3n}} \]

- **McDiarmid’s inequality**
 - Concentration of \(f(X_1,\ldots,X_n) \) when \(f \) is stable / coordinate-wise Lipschitz.
 - Concentration is now enough, usually we need to also compute expectation.

- **Union bound**: merging failure probabilities.
Recap: Sample complexity bound

Attempt 1

• Simulation Lemma

\[Q^\pi - \hat{Q}^\pi = \gamma(I - \gamma\hat{P}^\pi)^{-1}(P - \hat{P})V^\pi \]

• Uniform convergence bound for all policies
 • By Holder’s inequality, McDiarmid inequality.

• Sample complexity bound it suffices that we call this many times.

\[O\left(\frac{S^2A + SA\log(2SA/\delta))}{(1-\gamma)^4\epsilon^2} \right) \]
Recap: Sample complexity bound

Attempt 2

- Show that the V^* of the estimated MDP is close to the V^* function of the true MDP.
 \[\|Q^* - \hat{Q}^*\|_\infty \leq \frac{\gamma}{1 - \gamma} \| (P - \hat{P}) V^* \|_\infty \]

- Use Q-value amplification lemma:
 \[V^{\pi_Q} \geq V^* - \frac{2\|Q - Q^*\|_\infty}{1 - \gamma} \]

- Overall sample complexity bound:
 \[O\left(\frac{SA \log(2SA/\delta)}{(1 - \gamma)^6 \epsilon^2} \right) \]
Recap: optimal sample complexity

• Optimal sample complexity:

\[\Theta \left(\frac{SA \log(2SA/\delta)}{(1-\gamma)^3 \epsilon^2} \right) \]

• Ideas to achieve it:
 • Bernstein inequality. (HW1)
 • Strong variance bound. (HW1)
 • Advanced Q-value error to policy value (not covered in the class)
This lecture

1. Wrap up MDPs
 • Performance difference lemma and advantage decomposition (Readings: AJKS Section 1.6)
 • Remarks about finite horizon / episodic MDPs. (Readings: AJKS Section 1.2)

2. RL algorithms
 • Model-based vs Model-free RL algorithms
 • Temporal difference learning. (Sutton and Barto Ch 5-6)
 • TD learning with linear function approximation.
Advantage function and Performance Difference Lemma

• Advantage function: \(A^\pi(s, a) := Q^\pi(s, a) - V^\pi(s) \cdot \)
 • The advantage of taking given action over following the policy.
 • Simple fact: \(A^*(s, a) := A^{\pi^*}(s, a) \leq 0 \)

• Performance Difference Lemma

Lemma 1.16. (The performance difference lemma) For all policies \(\pi, \pi' \) and distributions \(\mu \) over \(S \),

\[
V^\pi(\mu) - V^{\pi'}(\mu) = \frac{1}{1 - \gamma} \mathbb{E}_{s' \sim d_\mu^\pi} \mathbb{E}_{a' \sim \pi'(\cdot | s')} \left[A^{\pi'}(s', a') \right].
\]

where \(d_\mu^\pi(s) = (1 - \gamma) \sum_{t=1}^{\infty} \gamma^{t-1} \mathbb{P}_{\pi}[S_t = s] = (1 - \gamma) \nu_\mu^\pi(s) \)
Proof of Performance Difference Lemma

\[V^\pi(s) - V^{\pi'}(s) = \mathbb{E}_{\tau \sim \Pr^\pi(\tau|s_0=s)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] - V^{\pi'}(s) \]

\[= \mathbb{E}_{\tau \sim \Pr^\pi(\tau|s_0=s)} \left[\sum_{t=0}^{\infty} \gamma^t \left(r(s_t, a_t) + V^{\pi'}(s_t) - V^{\pi'}(s_t) \right) \right] - V^{\pi'}(s) \]

\[\overset{(a)}{=} \mathbb{E}_{\tau \sim \Pr^\pi(\tau|s_0=s)} \left[\sum_{t=0}^{\infty} \gamma^t \left(r(s_t, a_t) + \gamma V^{\pi'}(s_{t+1}) - V^{\pi'}(s_t) \right) \right] \]

\[\overset{(b)}{=} \mathbb{E}_{\tau \sim \Pr^\pi(\tau|s_0=s)} \left[\sum_{t=0}^{\infty} \gamma^t \left(r(s_t, a_t) + \gamma \mathbb{E}[V^{\pi'}(s_{t+1})|s_t, a_t] - V^{\pi'}(s_t) \right) \right] \]

\[\overset{(c)}{=} \mathbb{E}_{\tau \sim \Pr^\pi(\tau|s_0=s)} \left[\sum_{t=0}^{\infty} \gamma^t \left(Q^{\pi'}(s_t, a_t) - V^{\pi'}(s_t) \right) \right] \]

\[= \mathbb{E}_{\tau \sim \Pr^\pi(\tau|s_0=s)} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi'}(s_t, a_t) \right] = \frac{1}{1 - \gamma} \mathbb{E}_{s' \sim d_s} \mathbb{E}_{a \sim \pi(\cdot|s)} \gamma^t A^{\pi'}(s', a), \]
Finite horizon MDPs

• Parameterization / Setup

\[M = (S, A, \{P\}_h, \{r\}_h, H, \mu) \]

• Finite horizon MDPs with stationary transitions / non-stationary transitions
Bellman equations and optimal policies for the finite horizon MDPs

- Even if P and r are stationary
 - the V functions are Q functions are not.

- By the Markovian property, it suffices to consider “nonstationary” but “memoryless” policies.
 - There exists a deterministic / memoryless optimal policy.
Other aspects of finite-horizon MDPs

- Advantage function and Performance Difference Lemma
 \[V^\pi - V^{\tilde{\pi}} = \sum_{h=0}^{H-1} \mathbb{E}_{s,a \sim \mathbb{P}_h} \left[A^{\tilde{\pi}}_h(s, a) \right] \]
 \[A^{\pi}_h(s, a) = Q^{\pi}_h(s, a) - V^{\pi}_h(s) \]

- Simulation lemma (HW1, last question)
- LP-formulation and occupancy measures
- Sample complexities under a generative model setting
Two-way reductions between finite horizon MDPs and infinite horizon / discounted MDPs

• Infinite horizon \Rightarrow finite horizon
 • Clip at $O(1/(1-\gamma))$.
 • Define time-varying rewards.

• Finite horizon \Rightarrow infinite horizon
 • The last step transitions into an absorbing state with self-loops and zero rewards.
 • Discounting factor γ set to be 1.
Two-way reductions between finite-H MDPs with stationary and non-stationary transitions.

• Stationary \Rightarrow Non-stationary

• Non-stationary \Rightarrow Stationary
Other MDP settings that we will not consider in this course

• Infinite-horizon average reward MDPs
 • Usually require additional conditions for this to be well-defined.

• Indefinite-horizon setting
 • H is a random variable
 • e.g. Frozen-lake / Mountain car / other navigation tasks
 • Tricky issue: not invariant to scaling / translation of the rewards.

We are not going to cover these settings in this course.
Example: Frozen lake.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- Finite horizon or infinite horizon?
- What is a good policy?

actions: UP, DOWN, LEFT, RIGHT

UP e.g.,

State-transitions with action UP:
80% move up
10% move left
10% move right

*If you bump into a wall, you stay where you are.
Optimal policies in the different reward settings

What if there is a positive reward for each step?
Partially Observed MDPs

• POMDP:
 • Estimate belief states (posterior distribution of state given history, i.e., Kalman filter)
 • Take actions according to the belief state.

• Computational considerations
 • MDP-planning: P-complete
 • POMDP-planning: PSPACE-complete (harder than NP-complete)
 • MDP-learning: polynomial sample complexity
 • POMDP-learning: often not identifiable.

*We are not going to cover POMDP in this course, but good references are available.
This lecture

1. Wrap up MDPs
 • Performance difference lemma and advantage decomposition (Readings: AJKS Section 1.6)
 • Remarks about finite horizon / episodic MDPs. (Readings: AJKS Section 1.2)

2. RL algorithms
 • Model-based vs Model-free RL algorithms
 • Temporal difference learning. (Sutton and Barto Ch 5-6)
 • TD learning with linear function approximation.
Recap: Policy Iterations and Value Iterations

• What are these algorithms for?
 • Algorithms of computing the V^* and Q^* functions from MDP parameters

• Policy Iterations

$$\pi_0 \rightarrow^E V^{\pi_0} \rightarrow^I \pi_1 \rightarrow^E V^{\pi_1} \rightarrow^I \ldots \rightarrow^I \pi^* \rightarrow^E V^*$$

• Value iterations

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k(s')]$$

• How do we make sense of them?
 • Recursively applying the Bellman equations until convergence.

*These methods are called “Dynamic Programming” approaches in Chap 4 of Sutton and Barto.
They are no longer valid in RL

- **Policy Evaluation**
 \[V_{k+1}^{\pi}(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')] \]

- **Policy improvement**
 \[\pi'(s) = \arg \max_a Q^\pi(s,a) \]
 \[= \arg \max_a \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')] \]

- **Value iterations**
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k(s')] \]

*We do not have the MDP parameters in RL!
Example: Frozen lake

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what’s the strategy to achieve max reward?
Instead, reinforcement learning agents have “online” access to an environment

- State, Action, Reward
- Unknown reward function, unknown state-transitions.
- Agents can “act” and “experiment”, rather than only doing offline planning.

![Diagram of reinforcement learning cycle]
Idea 1: Model-based Reinforcement Learning

• Model-based idea
 • Let’s approximate the model based on experiences
 • Then solve for the values as if the learned model were correct

• Step 1: Get data by running the agent to explore
 • Many data points of the form:
 \{(s_1, a_1, s_2, r_1), ..., (s_N, a_N, s_{N+1}, r_N)\}

• Step 2: Estimate the model parameters
 • \(\hat{P}(s' | s, a)\) --- plug-in / MLE. We need to observe the transition many times for each \(s, a\)
 • \(\hat{r}(s', a, s)\) --- this is an estimate of the empirical rewards.
Then we can plug in these estimates and then use dynamic programming for policy evaluation / improvements.

\[
V_{k+1}^\pi(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} \hat{P}(s'|s,a)[\hat{r}(s,a,s') + \gamma V_k^\pi(s')]
\]

\[
\pi' \leftarrow \arg \max_a \sum_{s'} \hat{P}(s'|s,a)[\hat{r}(s,a,s') + \gamma V_k^\pi(s')]
\]

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} \hat{P}(s'|s,a)[\hat{r}(s,a,s') + \gamma V_k(s')]
\]

* As usual, “\textbf{hat}” indicates empirical estimates.

* These iterations will produce \(\hat{V}^* \) and \(\hat{Q}^* \) functions, and then \(\hat{\pi}^* \)
This is OK if we have a generative model! But there are complications.

• For MDPs
 • Often we need to take a carefully chosen sequence of actions to reach a state

 • The chance of randomly running into a state can be exponentially small, if we decide to take random actions.

• Question: What is an example of this?

*Need to somehow update the “exploration policy” on the fly!
More generally, model-based method is a algorithm design principle.

• We use function approximation on P

• Function classes:

• Simulation lemma still applies

\[Q^\pi - \hat{Q}^\pi = \gamma (I - \gamma \hat{P}^\pi)^{-1} (P - \hat{P}) V^\pi \]

• If:
• But:
Idea 2: **Model-free Reinforcement Learning**

- Do we need the model? Can we learn the Q function directly?
 - How many free parameters are there to represent the Q-function?

- Recall: Policy iterations

\[
\pi_0 \rightarrow^E V^{\pi_0} \rightarrow^I \pi_1 \rightarrow^E V^{\pi_1} \rightarrow^I \ldots \rightarrow^I \pi^* \rightarrow^E V^*
\]

- Maybe we can do policy evaluation / value iterations without estimating the model?
Model-free method is yet another algorithm design principle

- We use function approximation on Q directly

- Function classes

- Induced policy class
Monte Carlo Policy Evaluation (Prediction)

• want to estimate $V^\pi(s)$
 = expected return starting from s and following π
 • estimate as average of observed returns in state s

• We can execute the policy π

• first-visit MC
 • average returns following the first visit to state s

\[
V^\pi(s) \approx (2 + 1 - 5 + 4)/4 = 0.5
\]
Monte Carlo Policy Optimization (Control)

- V^π not enough for policy improvement
 - need exact model of environment

- estimate $Q^\pi(s,a)$
 $$\pi'(s) = \arg \max_a Q^\pi(s, a)$$

- MC control
 $$\pi_0 \rightarrow E \ Q^{\pi_0} \rightarrow I \ \pi_1 \rightarrow E \ Q^{\pi_1} \rightarrow I \ \ldots \rightarrow I \ \pi^* \rightarrow E \ Q^*$$
 - update after each episode

- Two problems
 - greedy policy won’t explore all actions
 - Requires many independent episodes for the estimated value function to be accurate.
 - eps-greedy, or bonus design.
Improved Monte-Carlo Q-function estimate using Bellman equations

• Recall:

\[Q^\pi(s, a) = \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma \sum_{a'} \pi(a'|s')Q^\pi(s', a')] \]

\[Q^\pi(s, a) = r^\pi(s, a) + \gamma \mathbb{E}_{s' \sim P(s'|s, a)}[V^\pi(s')] \]

• We can use the empirical (Monte Carlo) estimate.

\[\widehat{Q}^\pi(s, a) = \widehat{r}^\pi(s, a) + \gamma \mathbb{E}_{s' \sim P(s'|s, a)}[\widehat{V}^\pi(s')] \]

*No need to estimate \(P(s'|s, a) \) or \(r(s, a, s') \) as intermediate steps.
*Require only \(O(SA) \) space, rather than \(O(S^2A) \)
Online averaging representation of MC

\[G_1(s) = +2 \]
\[G_2(s) = +1 \]
\[G_3(s) = -5 \]
\[G_4(s) = +4 \]

\[V^\pi(s) \approx (2 + 1 - 5 + 4)/4 = 0.5 \]

- Alternative, online averaging update

\[V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right], \quad \text{where } \alpha = 1/N_S_t \]
DP + MC = Temporal Difference Learning

• Monte Carlo:

\[V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right], \]

Issue: \(G_t \) can only be obtained after the entire episode!

• The idea of TD learning:

\[\mathbb{E}_\pi [G_t] = \mathbb{E}_\pi [R_t | S_t] + \gamma V^\pi (S_{t+1}) \]

We only need one step before we can plug-in and estimate the RHS!

• TD-Policy evaluation

\[V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right] \]

Bootstrapping!
Bootstrap’s origin

• “The Surprising Adventures of Baron Münchausen”
 • Rudolf Erich Raspe, 1785

PULL YOURSELF UP BY THE BOOT STRAPS!!!

• In statistics: Brad Efron’s resampling methods
• In computing: Booting...
• In RL: It simply means TD learning
TD policy optimization (TD-control)

- **SARSA (On-Policy TD-control)**
 - Update the Q function by bootstrapping Bellman Equation
 \[
 Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]
 \]
 - Choose the next A’ using Q, e.g., eps-greedy.

- **Q-Learning (Off-policy TD-control)**
 - Update the Q function by bootstrapping Bellman Optimality Eq.
 \[
 Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]
 \]
 - Choose the next A’ using Q, e.g., eps-greedy, or any other policy.

Remarks:
- These are **proven to converge** asymptotically.
- Much more data-efficient in practice, than MC.
- Regret analysis is still active area of research.
Advantage of TD over Monte Carlo

• Given a trajectory, a roll-out, of T steps.

 • MC updates the Q function only once

 • TD updates the Q function (and the policy) T times!

Remark: This is the same kind of improvement from Gradient Descent to Stochastic Gradient Descent (SGD).
Model-free vs Model-based RL algorithms

• Different function approximations

• Different space efficiency

• Which one is more statistically efficient?
 • More or less equivalent in the tabular case.
 • Different challenges in their analysis.