CS292F StatRL Lecture 4
Finite-Horizon MDPs / Temporal Difference Learning

Instructor: Yu-Xiang Wang
Spring 2021
UC Santa Barbara
Homework 1 released; project ideas shared

• You will learn the various elements of MDPs by solving problems. Also you will practice using Hoeffding’s inequality and Bernstein’s inequality.

• Mostly similar to what I covered in the lectures / sometimes the solutions are readily available by reading the AJKS book.

• I shared a document with recent RL theory papers by categories.
 • You do NOT have to pick one from there
 • Application projects are just as welcome --- e.g., applying RL to your problem / formulate your problem as an MDP.
 • I am happy to discuss with you if you have some fresh ideas.
Recap: MDP planning with access to generative models

• Motivation:
 1. Solving MDP faster / approximately with randomized algs that sample
 2. Study sample complexity of RL with unknown transitions (without worrying about exploration)

• Algorithm of interest: Model-based plug-in estimator.
 • Sample all state-action pairs uniformly. Estimate the transition kernel.
 • Do VI / PI on the approximate MDP.
Recap: on a brief digression, we learned concentration inequalities.

- Hoeffding’s inequality
 \[|\bar{X} - \mathbb{E}[\bar{X}]| \leq \sqrt{\frac{B^2}{2n}} \log(2/\delta) \]

- Bernstein inequality
 \[|\bar{X} - \mathbb{E}[X_1]| \leq \sqrt{\frac{2\text{Var}[X_1]}{n} \log(2/\delta)} + \frac{2M \log(2/\delta)}{3n} \]

- McDiarmid’s inequality
 - Concentration of \(f(X_1,\ldots,X_n) \) when \(f \) is stable / coordinate-wise Lipschitz.
 - Concentration is now enough, usually we need to also compute expectation.

- Union bound: merging failure probabilities.
Recap: Sample complexity bound

Attempt 1

- **Simulation Lemma**
 \[Q^\pi - \hat{Q}^\pi = \gamma (I - \gamma \hat{P}^\pi)^{-1} (P - \hat{P}) V^\pi \]

- **Uniform convergence bound for all policies**
 - By Holder’s inequality, McDiarmid inequality.

- **Sample complexity bound** it suffices that we call this many times.
 \[O\left(\frac{S^2 A + SA \log(2SA/\delta))}{(1 - \gamma)^4 \varepsilon^2} \right) \]
Recap: Sample complexity bound

Attempt 2

• Show that the V^* of the estimated MDP is close to the the V^* function of the true MDP.

$$||Q^* - \hat{Q}^*||_\infty \leq \frac{\gamma}{1 - \gamma} ||(P - \hat{P})V^*||_\infty$$

• Use Q-value amplification lemma:

$$V_{\hat{Q}}^\pi \geq V^* - \frac{2||Q - Q^*||_\infty}{1 - \gamma} 1.$$

• Overall sample complexity bound:

$$O\left(\frac{SA \log(2SA/\delta)}{(1 - \gamma)^6 \epsilon^2} \right)$$
Recap: optimal sample complexity

• Optimal sample complexity:

\[\Theta \left(\frac{SA \log(2SA/\delta))}{(1-\gamma)^3 \epsilon^2} \right) \]

• Ideas to achieve it:
 • Bernstein inequality. (HW1)
 • Strong variance bound. (HW1)
 • Advanced Q-value error to policy value (not covered in the class)
This lecture

1. Wrap up MDPs
 • Performance difference lemma and advantage decomposition (Readings: AJKS Section 1.6)
 • Remarks about finite horizon / episodic MDPs. (Readings: AJKS Section 1.2)

2. RL algorithms
 • Model-based vs Model-free RL algorithms
 • Temporal difference learning. (Sutton and Barto Ch 5-6)
 • TD learning with linear function approximation.
Advantage function and Performance Difference Lemma

• Advantage function: \(A^\pi(s, a) := Q^\pi(s, a) - V^\pi(s) \).
 • The advantage of taking given action over following the policy.
 • Simple fact: \(A^*(s, a) := A^{\pi^*}(s, a) \leq 0 \)

• Performance Difference Lemma

\[V^\pi(\mu) - V^{\pi'}(\mu) = \frac{1}{1 - \gamma} \mathbb{E}_{s' \sim d_\mu^\pi, a' \sim \pi(\cdot | s')} \left[A^{\pi'}(s', a') \right]. \]

where \(d_\mu^\pi(s) = (1 - \gamma) \sum_{t=1}^\infty \gamma^{t-1} \mathbb{P}^\pi [S_t = s] = (1 - \gamma) \nu^\pi_\mu(s) \).
Proof of Performance Difference Lemma

\[V^\pi(s) - V'^\pi(s) = \mathbb{E}_{\tau \sim \Pr^\pi(\tau|s_0=s)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] - V'^\pi(s) \]

\[= \mathbb{E}_{\tau \sim \Pr^\pi(\tau|s_0=s)} \left[\sum_{t=0}^{\infty} \gamma^t \left(r(s_t, a_t) + V^\pi(s_t) - V'^\pi(s_t) \right) \right] - V'^\pi(s) \]

\[\overset{(a)}{=} \mathbb{E}_{\tau \sim \Pr^\pi(\tau|s_0=s)} \left[\sum_{t=0}^{\infty} \gamma^t \left(r(s_t, a_t) + \gamma V'^\pi(s_{t+1}) - V'^\pi(s_t) \right) \right] \]

\[\overset{(b)}{=} \mathbb{E}_{\tau \sim \Pr^\pi(\tau|s_0=s)} \left[\sum_{t=0}^{\infty} \gamma^t \left(r(s_t, a_t) + \gamma \mathbb{E}[V'^\pi(s_{t+1})|s_t, a_t] - V'^\pi(s_t) \right) \right] \]

\[\overset{(c)}{=} \mathbb{E}_{\tau \sim \Pr^\pi(\tau|s_0=s)} \left[\sum_{t=0}^{\infty} \gamma^t \left(Q'^\pi(s_t, a_t) - V'^\pi(s_t) \right) \right] \]

\[= \mathbb{E}_{\tau \sim \Pr^\pi(\tau|s_0=s)} \left[\sum_{t=0}^{\infty} \gamma^t A'^\pi(s_t, a_t) \right] = \frac{1}{1 - \gamma} \mathbb{E}_{s' \sim d^\pi} \mathbb{E}_{a \sim \pi(.|s)} \gamma^t A'^\pi(s', a), \]
Finite horizon MDPs

• Parameterization / Setup

\[M = (S, A, \{P\}_h, \{r\}_h, H, \mu) \]

Goal is to find an optimal policy:

\[V^{\pi}(a) = \mathbb{E} \left[\sum_{t=1}^{H} R_t \mid S_0 = s, A_0 = a \right] \]

• Finite horizon MDPs with stationary transitions / non-stationary transitions

\[\text{if } P_h(s'|s, a) = P_h'(s'|s_0, a_0) \]

\[\forall s', s_0 \in S, \forall a'; a_0 \in A, \forall h, h' \geq 1 \]
Bellman equations and optimal policies for the finite horizon MDPs

- Even if P and r are stationary
 - the V functions are Q functions are not.

 \[
 V_t = r_t + P_t V_{t+1} \in \mathbb{R}^{|S|} \\
 Q_t = r_t + P_t \cdot V_{t+1} \\
 = r_t + P_t \cdot V_{t+1} \in \mathbb{R}^{|S|}
 \]

 for all $t = 1, \ldots, H$

- By the Markovian property, it suffices to consider “nonstationary” but “memoryless” policies.
 - There exists a deterministic / memoryless optimal policy.
Other aspects of finite-horizon MDPs

• Advantage function and Performance Difference Lemma

\[V^\pi - V^{\tilde{\pi}} = \sum_{h=0}^{H-1} E_{s,a \sim p^h} [A^\tilde{\pi}_h(s, a)] \]

\[A^\pi_h(s, a) = Q^\pi_h(s, a) - V^\pi_h(s) \]

• Simulation lemma (HW1, last question)
• LP-formulation and occupancy measures
• Sample complexities under a generative model setting
Two-way reductions between finite horizon MDPs and infinite horizon / discounted MDPs

• Infinite horizon \Rightarrow finite horizon
 • Clip at $O(1/(1-\gamma))$.
 • Define time-varying rewards.

• Finite horizon \Rightarrow infinite horizon
 • The last step transitions into an absorbing state with self-loops and zero rewards.
 • Discounting factor γ set to be 1.
Two-way reductions between finite-H MDPs with stationary and non-stationary transitions.

- Stationary \Rightarrow Non-stationary
 \[
 P_h(s' | s, a) \\
 P_h'(s' | s, a)
 \]

- Non-stationary \Rightarrow Stationary
 \[
 s_0 \rightarrow s_1, s_2 \cdots \rightarrow s_H
 \]
Other MDP settings that we will not consider in this course

• Infinite-horizon average reward MDPs

\[
\max_{\pi} \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} R_t
\]

• Usually require additional conditions for this to be well-defined.

• Indefinite-horizon setting
 • H is a random variable
 • e.g. Frozen-lake / Mountain car / other navigation tasks
 • Tricky issue: not invariant to scaling / translation of the rewards.

We are not going to cover these settings in this course.
Example: Frozen lake.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- Finite horizon or infinite horizon?
- What is a good policy?

actions: UP, DOWN, LEFT, RIGHT

UP e.g.,

State-transitions with action UP:
- 80% move up
- 10% move left
- 10% move right

*If you bump into a wall, you stay where you are.
Optimal policies in the different reward settings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>→</td>
<td>→</td>
<td>+1</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>↑</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
</tbody>
</table>

reward **-0.04** for each step

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>→</td>
<td>→</td>
<td>+1</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>→</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
</tbody>
</table>

reward **-2** for each step
Optimal policies in the different reward settings

What if there is a positive reward for each step?
Partially Observed MDPs

• **POMDP:**
 - Estimate belief states (posterior distribution of state given history, i.e., Kalman filter)
 - Take actions according to the belief state.

• **Computational considerations**
 - MDP-planning: P-complete
 - POMDP-planning: PSPACE-complete (harder than NP-complete)
 - MDP-learning: polynomial sample complexity
 - POMDP-learning: often not identifiable.

We are not going to cover POMDP in this course, but good references are available.
This lecture

1. Wrap up MDPs
 • Performance difference lemma and advantage decomposition (Readings: AJKS Section 1.6)
 • Remarks about finite horizon / episodic MDPs. (Readings: AJKS Section 1.2)

2. RL algorithms
 • Model-based vs Model-free RL algorithms
 • Temporal difference learning. (Sutton and Barto Ch 5-6)
 • TD learning with linear function approximation.
Recap: Policy Iterations and Value Iterations

• What are these algorithms for?
 • Algorithms of computing the V^* and Q^* functions from MDP parameters

• Policy Iterations

$\pi_0 \rightarrow E \ V^{\pi_0} \rightarrow I \ \pi_1 \rightarrow E \ V^{\pi_1} \rightarrow I \ \ldots \rightarrow I \ \pi^* \rightarrow E \ V^*$

• Value iterations

$V_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_k(s')]$

• How do we make sense of them?
 • Recursively applying the Bellman equations until convergence.
Recap: Policy Iterations and Value Iterations

• What are these algorithms for?
 • Algorithms of computing the V^* and Q^* functions from MDP parameters

• Policy Iterations

\[\pi_0 \rightarrow E \quad V^\pi_0 \rightarrow I \quad \pi_1 \rightarrow E \quad V^\pi_1 \rightarrow I \quad \ldots \rightarrow I \quad \pi^* \rightarrow E \quad V^* \]

• Value iterations

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k(s')] \]

• How do we make sense of them?
 • Recursively applying the Bellman equations until convergence.

These methods are called “Dynamic Programming” approaches in Chap 4 of Sutton and Barto.
They are no longer valid in RL

• **Policy Evaluation**

\[
V_{k+1}^\pi(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k^\pi(s')]
\]

• **Policy improvement**

\[
\pi'(s) = \arg \max_a Q^\pi(s, a)
\]

\[
= \arg \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k^\pi(s')]
\]

• **Value iterations**

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V_k(s')]
\]
They are no longer valid in RL

- **Policy Evaluation**
 \[
 V_{k+1}^\pi(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^\pi(s')]
 \]

- **Policy improvement**
 \[
 \pi'(s) = \arg \max_a Q^\pi(s,a)
 = \arg \max_a \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^\pi(s')]
 \]

- **Value iterations**
 \[
 V_{k+1}(s) \leftarrow \max_a \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k(s')]
 \]

We do not have the MDP parameters in RL!
Example: Frozen lake

- actions: UP, DOWN, LEFT, RIGHT
- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what’s the strategy to achieve max reward?
Example: Frozen lake

actions: UP, DOWN, LEFT, RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what’s the strategy to achieve max reward?
Example: Frozen lake

• reward +1 at [4,3], -1 at [4,2]
• reward -0.04 for each step
• what’s the strategy to achieve max reward?
Example: Frozen lake

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what’s the strategy to achieve max reward?
Instead, reinforcement learning agents have “online” access to an environment

- State, Action, Reward
- Unknown reward function, unknown state-transitions.
- Agents can “act” and “experiment”, rather than only doing offline planning.
Idea 1: Model-based Reinforcement Learning

• Model-based idea
 • Let’s approximate the model based on experiences
 • Then solve for the values as if the learned model were correct

• Step 1: Get data by running the agent to explore
 • Many data points of the form:
 \{(s_1, a_1, s_2, r_1), ..., (s_N, a_N, s_{N+1}, r_N)\}

• Step 2: Estimate the model parameters
 • \(\hat{P}(s’|s, a)\) --- plug-in / MLE. We need to observe the transition many times for each \(s, a\)
 • \(\hat{r}(s’, a, s)\) --- this is an estimate of the empirical rewards.
Then we can plug in these estimates and then use dynamic programming for policy evaluation / improvements.

\[
V_{k+1}^\pi(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} \hat{P}(s'|s, a)[\hat{r}(s, a, s') + \gamma V_k^\pi(s')]
\]

\[
\pi' \leftarrow \text{arg max}_a \sum_{s'} \hat{P}(s'|s, a)[\hat{r}(s, a, s') + \gamma V_k^\pi(s')]
\]

\[
V_{k+1}(s) \leftarrow \text{max}_a \sum_{s'} \hat{P}(s'|s, a)[\hat{r}(s, a, s') + \gamma V_k(s')]
\]
Then we can plug in these estimates and then use dynamic programming for policy evaluation / improvements.

\[
V_{k+1}^\pi(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} \hat{P}(s'|s, a)[\hat{r}(s, a, s') + \gamma V_k^\pi(s')]
\]

\[
\pi' \leftarrow \arg \max_a \sum_{s'} \hat{P}(s'|s, a)[\hat{r}(s, a, s') + \gamma V_k^\pi(s')]
\]

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} \hat{P}(s'|s, a)[\hat{r}(s, a, s') + \gamma V_k(s')]
\]
Then we can plug in these estimates and then use dynamic programming for policy evaluation / improvements.

\[V_{k+1}^\pi(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} \hat{P}(s'|s,a)[\hat{r}(s,a,s') + \gamma V_k^\pi(s')] \]

\[\pi' \leftarrow \arg \max_a \sum_{s'} \hat{P}(s'|s,a)[\hat{r}(s,a,s') + \gamma V_k^\pi(s')] \]

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} \hat{P}(s'|s,a)[\hat{r}(s,a,s') + \gamma V_k(s')] \]

* As usual, “hat” indicates empirical estimates.
Then we can plug in these estimates and then use dynamic programming for policy evaluation / improvements.

\[V_{k+1}^{\pi}(s) \leftarrow \sum_a \pi(a|s) \sum_{s'} \hat{P}(s'|s,a)[\hat{r}(s,a,s') + \gamma V_k^{\pi}(s')] \]

\[\pi' \leftarrow \arg \max_a \sum_{s'} \hat{P}(s'|s,a)[\hat{r}(s,a,s') + \gamma V_k^{\pi}(s')] \]

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} \hat{P}(s'|s,a)[\hat{r}(s,a,s') + \gamma V_k(s')] \]

* As usual, “hat” indicates empirical estimates.

* These iterations will produce \(\hat{V}^* \) and \(\hat{Q}^* \) functions, and then \(\hat{\pi}^* \)
This is OK if we have a generative model! But there are complications.
This is OK if we have a generative model! But there are complications.

• For MDPs
 • Often we need to take a carefully chosen sequence of actions to reach a state
 • The chance of randomly running into a state can be exponentially small, if we decide to take random actions.
This is OK if we have a generative model! But there are complications.

• For MDPs
 • Often we need to take a carefully chosen sequence of actions to reach a state

 • The chance of randomly running into a state can be exponentially small, if we decide to take random actions.

• Question: What is an example of this?
This is OK if we have a generative model! But there are complications.

• For MDPs
 • Often we need to take a carefully chosen sequence of actions to reach a state

 • The chance of randomly running into a state can be exponentially small, if we decide to take random actions.

• Question: What is an example of this?

*Need to somehow update the “exploration policy” on the fly!
More generally, model-based method is a algorithm design principle.

• We use function approximation on P

• Function classes:

• Simulation lemma still applies

$$Q^\pi - \hat{Q}^\pi = \gamma(I - \gamma\hat{P}^\pi)^{-1}(P - \hat{P})V^\pi$$

• If: P is a valid transition kernel
• But: error propagation might be tricky
Idea 2: **Model-free** Reinforcement Learning

- Do we need the model? Can we learn the Q function directly?

\[\pi_0 \rightarrow^E V_{\pi_0} \rightarrow^I \pi_1 \rightarrow^E V_{\pi_1} \rightarrow^I \ldots \rightarrow^I \pi^* \rightarrow^E V^* \]
Idea 2: Model-free Reinforcement Learning

• Do we need the model? Can we learn the Q function directly?
 • How many free parameters are there to represent the Q-function?
Idea 2: **Model-free** Reinforcement Learning

- Do we need the model? Can we learn the Q function directly?
 - **How many free parameters are there to represent the Q-function?**

- Recall: Policy iterations

\[
\pi_0 \rightarrow E V \pi_0 \rightarrow I \pi_1 \rightarrow E V \pi_1 \rightarrow I \ldots \rightarrow I \pi^* \rightarrow E V^*
\]

- Maybe we can do policy evaluation / value iterations without estimating the model?
Model-free method is yet another algorithm design principle

• We use function approximation on Q directly

\[Q \in \mathcal{F} \]

\[\mathcal{F} : S \times A \to \mathbb{R} \]

• Function classes

• Induced policy class

\[\Pi_{\pi} = \left\{ \arg\max_{a,s} h(a,s) \mid h \in \mathcal{H} \right\} \]
Monte Carlo Policy Evaluation (Prediction)

• want to estimate $V^\pi(s)$

 = expected return starting from s and following π

 • estimate as average of observed returns in state s

• We can execute the policy π

• first-visit MC

 • average returns following the first visit to state s

$$G_1(s) = +2$$
Monte Carlo Policy Evaluation (Prediction)

• want to estimate $V^{\pi}(s)$
 = expected return starting from s and following π
 • estimate as average of observed returns in state s
• We can execute the policy π
• first-visit MC
 • average returns following the first visit to state s

\[
G_1(s) = +2 \\
G_2(s) = +1 \\
G_3(s) = -5 \\
G_4(s) = +4
\]

\[V^{\pi}(s) \approx (2 + 1 - 5 + 4)/4 = 0.5\]
Monte Carlo Policy Optimization (Control)

• \(V^\pi \) not enough for policy improvement
 • need exact model of environment

• estimate \(Q^\pi(s,a) \)
 \[\pi'(s) = \arg \max_a Q^\pi(s,a) \]

• MC control
 \[\pi_0 \rightarrow E \ Q^{\pi_0} \rightarrow I \ \pi_1 \rightarrow E \ Q^{\pi_1} \rightarrow I \ \ldots \rightarrow I \ \pi^* \rightarrow E \ Q^* \]
 • update after each episode

• Two problems
 • greedy policy won’t explore all actions
 • Requires many independent episodes for the estimated value function to be accurate.
Monte Carlo Policy Optimization (Control)

- V^π not enough for policy improvement
 - need exact model of environment

- estimate $Q^\pi(s,a)$
 \[\pi'(s) = \arg \max_a Q^\pi(s,a) \]

- MC control
 \[\pi_0 \rightarrow E Q^{\pi_0} \rightarrow I \pi_1 \rightarrow E Q^{\pi_1} \rightarrow I \ldots \rightarrow I \pi^* \rightarrow E Q^* \]
 - update after each episode

- Two problems
 - greedy policy won’t explore all actions
 - Requires many independent episodes for the estimated value function to be accurate.
 eps-greedy, or bonus design.
Improved Monte-Carlo Q-function estimate using Bellman equations

• Recall:

\[
Q^\pi(s, a) = \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma \sum_{a'} \pi(a'|s')Q^\pi(s', a')]
\]

\[
Q^\pi(s, a) = r^\pi(s, a) + \gamma \mathbb{E}_{s' \sim P(s'|s,a)}[V^\pi(s')]
\]
Improved Monte-Carlo Q-function estimate using Bellman equations

• Recall:

\[Q^\pi(s, a) = \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma \sum_{a'} \pi(a'|s')Q^\pi(s', a')] \]

\[Q^\pi(s, a) = r^\pi(s, a) + \gamma \mathbb{E}_{s' \sim P(s'|s, a)}[V^\pi(s')] \]

• We can use the empirical (Monte Carlo) estimate.

\[\hat{Q}^\pi(s, a) = \hat{r}^\pi(s, a) + \gamma \hat{\mathbb{E}}_{s' \sim P(s'|s, a)}[\hat{V}^\pi(s')] \]
Improved Monte-Carlo Q-function estimate using Bellman equations

• Recall:

\[Q^\pi(s, a) = \sum_{s'} P(s' | s, a) [r(s, a, s') + \gamma \sum_{a'} \pi(a' | s') Q^\pi(s', a')] \]

\[Q^\pi(s, a) = r^\pi(s, a) + \gamma \mathbb{E}_{s' \sim P(s' | s, a)} [V^\pi(s')] \]

• We can use the empirical (Monte Carlo) estimate.

\[\hat{Q}^\pi(s, a) = \hat{r}^\pi(s, a) + \gamma \mathbb{E}_{s' \sim P(s' | s, a)} [\hat{V}^\pi(s')] \]

*No need to estimate \(P(s' | s, a) \) or \(r(s, a, s') \) as intermediate steps.
*Require only \(O(SA) \) space, rather than \(O(S^2A) \)
Online averaging representation of MC

\[
G_1(s) = +2
\]
\[
G_2(s) = +1
\]
\[
G_3(s) = -5
\]
\[
G_4(s) = +4
\]
\[
V^\pi(s) \approx (2 + 1 - 5 + 4)/4 = 0.5
\]

- Alternative, online averaging update

\[
V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right], \quad \text{where} \quad \alpha = 1/NS_t
\]
If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning. TD learning is a combination of Monte Carlo ideas and dynamic programming (DP) ideas. Like Monte Carlo methods, TD methods can learn directly from raw experience without a model of the environment’s dynamics. Like DP, TD methods update estimates based in part on other learned estimates, without waiting for a final outcome (they bootstrap). The relationship between TD, DP, and Monte Carlo methods is a recurring theme in the theory of reinforcement learning; this chapter is the beginning of our exploration of it. Before we are done, we will see that these ideas and methods blend into each other and can be combined in many ways. In particular, in Chapter 7 we introduce n-step algorithms, which provide a bridge from TD to Monte Carlo methods, and in Chapter 12 we introduce the TD(γ) algorithm, which seamlessly unifies them.

As usual, we start by focusing on the policy evaluation or prediction problem, the problem of estimating the value function $v(\pi)$ for a given policy π. For the control problem (finding an optimal policy), DP, TD, and Monte Carlo methods all use some variation of generalized policy iteration (GPI). The differences in the methods are primarily differences in their approaches to the prediction problem.

6.1 TD Prediction

Both TD and Monte Carlo methods use experience to solve the prediction problem. Given some experience following a policy π, both methods update their estimate V of $v(\pi)$ for the nonterminal states S_t occurring in that experience. Roughly speaking, Monte Carlo methods wait until the return following the visit is known, then use that return as a target for $V(S_t)$. A simple every-visit Monte Carlo method suitable for nonstationary environments is

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)],$$

where G_t is the actual return following time t, and α is a constant step-size parameter (c.f., Equation 2.4). Let us call this method constant-α MC. Whereas Monte Carlo methods must wait until the end of the episode to determine the increment to $V(S_t)$ (only then is G_t known), TD methods need to wait only until the next time step. At time $t+1$ they immediately form a target and make a useful update using the observed reward R_{t+1} and the estimate $V(S_{t+1})$. The simplest TD method makes the update

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + V(S_{t+1}) - V(S_t)],$$

immediately on transition to S_{t+1} and receiving R_{t+1}. In effect, the target for the Monte Carlo update is G_t, whereas the target for the TD update is $R_{t+1} + V(S_{t+1})$. This TD method is called TD(δ), or

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + V(S_{t+1}) - V(S_t)],$$
DP + MC = Temporal Difference Learning

• Monte Carlo \[V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)] \]

Issue: \(G_t \) can only be obtained after the entire episode!
• Monte Carlo
\[V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right], \]
Issue: \(G_t \) can only be obtained after the entire episode!

• The idea of TD learning:
\[\mathbb{E}_\pi [G_t] = \mathbb{E}_\pi [R_t | S_t] + \gamma V_\pi (S_{t+1}) \]
DP + MC = Temporal Difference Learning

• Monte Carlo

\[V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)] , \]

Issue: \(G_t \) can only be obtained after the entire episode!

• The idea of TD learning:

\[\mathbb{E}_\pi [G_t] = \mathbb{E}_\pi [R_t | S_t] + \gamma V^\pi (S_{t+1}) \]

We only need one step before we can plug-in and estimate the RHS!
DP + MC = Temporal Difference Learning

• Monte Carlo

\[V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right] \]

Issue: \(G_t \) can only be obtained after the entire episode!

• The idea of TD learning:

\[
\mathbb{E}_\pi[G_t] = \mathbb{E}_\pi[R_t | S_t] + \gamma V^\pi(S_{t+1})
\]

We only need one step before we can plug-in and estimate the RHS!

• TD-Policy evaluation

\[V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right] \]
DP + MC = Temporal Difference Learning

• Monte Carlo

\[V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right], \]

Issue: \(G_t \) can only be obtained after the entire episode!

• The idea of TD learning:

\[\mathbb{E}_\pi [G_t] = \mathbb{E}_\pi [R_t | S_t] + \gamma V^\pi (S_{t+1}) \]

We only need one step before we can plug-in and estimate the RHS!

• TD-Policy evaluation

\[V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right] \]

Bootstrapping!
Bootstrap’s origin

- “The Surprising Adventures of Baron Münchausen”
 - Rudolf Erich Raspe, 1785

- In statistics: Brad Efron’s resampling methods
- In computing: Booting...
- In RL: It simply means TD learning
TD policy optimization (TD-control)

• **SARSA (On-Policy TD-control)**
 - Update the Q function by bootstrapping Bellman Equation
 \[Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)] \]
 - Choose the next \(A' \) using Q, e.g., eps-greedy.

• **Q-Learning (Off-policy TD-control)**
 - Update the Q function by bootstrapping Bellman Optimality Eq.
 \[Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)] \]
 - Choose the next \(A' \) using Q, e.g., eps-greedy, or any other policy.

Remarks:
- These are **proved to converge** asymptotically.
- Much more data-efficient in practice, than MC.
- Regret analysis is still active area of research.
Advantage of TD over Monte Carlo

• Given a trajectory, a roll-out, of T steps.

 • MC updates the Q function only once

 • TD updates the Q function (and the policy) T times!
Advantage of TD over Monte Carlo

- Given a trajectory, a roll-out, of T steps.
 - MC updates the Q function only once
 - TD updates the Q function (and the policy) T times!

Remark: This is the same kind of improvement from Gradient Descent to Stochastic Gradient Descent (SGD).
Model-free vs Model-based RL algorithms

• Different function approximations

• Different space efficiency

• Which one is more statistically efficient?
 • More or less equivalent in the tabular case.
 • Different challenges in their analysis.