7.1 Multi-arm bandits: Problem Setup

- No state or equivalently there’s only one state and k-actions \(a \in A = \{1, 2, ..., k\} \)
- Decide which arm to pull in every iteration, where we can think of the horizon to be 1
- Get reward \(\sum_{t=1}^{T} R_t \)
- \(E[R_t|A_t=a] = \mu_a \) and \(R_t = \mu_a + \text{Noise} \), where \(E[\text{Noise}] = 0 \)
- Define regret as \(T \max_{a \in [k]} E[R_t|a] - \sum_{t=1}^{T} E_{\pi}[E[R_t|a]] \)
- No regret means sublinear scaling in T.

\[
\lim_{T \to \infty} \frac{1}{T} \text{Regret}_T = 0
\]

- The regret (upper) bound needs to apply to all problem instances

7.1.1 Exploration first

- Spend first N steps exploring, picking each action \(\frac{N}{k} \) times, where \(k \) is the number of actions.
- Define

\[
\hat{Q}_t(a) = \frac{\sum_{i=1}^{t-1} R_i \cdot 1_{A_i=a}}{\sum_{i=1}^{t-1} 1_{A_i=a}}
\]

- For \(t = N+1, N+2, ..., T \):

\[
A_t = \arg\max_a Q_t(a)
\]

Recall the concentration inequalities:

Hoeffding’s inequality: Assume \(X_1, ..., X_n \) are independent and \(P(a_i \leq x_i \leq b_i) = 1 \)

\[
S_n = X_1 + ... + X_n
\]

\[
P(S_n - E[S_n] \geq t) \leq e^{\frac{-2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}}
\]
Easier version, if $0 < X_i < B$, with probability $1 - \delta$

$$|X - \mathbb{E}[X]| \leq \sqrt{\frac{B^2 \log(2/\delta)}{2n}}$$

Regret analysis of Exploration First

Since we take each action $\frac{N}{K}$ times, by Hoeffding’s, with probability $\geq 1 - \delta$

$$|\hat{Q}(a) - Q(a)| \leq \sqrt{\frac{k \log(2k/\delta)}{2N}}$$

for all $a \in A$, using union bound

$$\sup_{a \in A} |\hat{Q}(a) - Q(a)| \leq \sqrt{\frac{K}{2N} \log \frac{2k}{\delta}} = \epsilon$$

Regret for Exploration Phase:

$$\frac{N}{K} \sum_a \max_{a'} Q(a') - Q(a) \leq N$$

since $0 \leq Q(a) \leq 1$

Regret for Exploitation Phase:

Define $\hat{a}^* = \arg\max_a \hat{Q}(a)$

$$(T - N)(Q(a^*) - Q(\hat{a}^*))$$

$$= (T - N)(Q(a^*) - \hat{Q}(a^*) + \hat{Q}(a^*) - \hat{Q}(\hat{a}^*) + \hat{Q}(\hat{a}^*) - Q(\hat{a}^*))$$

$$\leq (T - N) \cdot 2\epsilon$$

since $Q(a^*) - \hat{Q}(a^*) \leq \epsilon$, $\hat{Q}(a^*) - \hat{Q}(\hat{a}^*) \leq 0$, $\hat{Q}(\hat{a}^*) - Q(\hat{a}^*) \leq \epsilon$

$$\leq 2T \sqrt{\frac{K}{2N} \log \frac{2k}{\delta}}$$

Total Regret:

$$\text{Regret} = N + 2T \sqrt{\frac{K}{2N} \log \frac{2k}{\delta}} = O(T^{\frac{3}{2}} K^{\frac{1}{2}} (\log \frac{2k}{\delta})^{\frac{3}{2}})$$

where we chose $N = T^{\frac{3}{2}} k^{\frac{1}{2}} (\log \frac{2k}{\delta})^{\frac{3}{2}}$
7.1.2 ϵ-greedy strategy

- With probability $1-\epsilon$ choose
 \[A_t = \arg\max_a Q_t(a) \]
- With probability ϵ choose an action uniformly at random.

Sketch of regret analysis for ϵ greedy:

- In expectation, each arm is chosen for at least ϵt times: By Hoeffding’s, at time t:
 \[N_t(a) \geq \frac{\epsilon t}{k} - O\left(\sqrt{\frac{k}{t}}\right) \geq \frac{\epsilon t}{2k} \]
- Condition on the number of times, and then apply Hoeffding’s inequality/union bound for all t and a
 \[\sup_a |\hat{Q}_t(a) - Q(a)| \leq O\left(\sqrt{\frac{k}{\epsilon t}}\right) \]
- The regret bound is then:
 \[\epsilon T + \sum_{t=1}^T C \sqrt{\frac{k}{\epsilon t}} \]
 where the first term comes from the exploration part and the second from the exploitation part. Note that we can bound the second term by observing that $\sum_{t=1}^T \frac{1}{\sqrt{t}}$ is less than $\int_1^T \frac{1}{\sqrt{x}} dx = 2\sqrt{T} - 2$

7.1.3 Upper Confidence Bound algorithm

- Play each action $a \in A$ once. Given that we have k actions this corresponds to k steps
- for $t = k+1, ..., T$
 \[A_t = \arg\max_a \hat{Q}_t(a) + \sqrt{\frac{\log(2TK)}{2N_t(a)}} \]
 where
 \[N_t(a) = \sum_{i=1}^{t-1} \mathbb{1}_{A_i=a} \]
 \[\hat{Q}_t(a) = \frac{1}{N_t(a)} (R_a + \sum_{i=k+1}^{t-1} \mathbb{1}_{A_i=a} R_i) \]

Introduce Martingale

- A sequence of random variables $X_1, ..., X_n$ is a Martingale if for any n
 \[\mathbb{E}[|X_n|] < \infty \]
 \[\mathbb{E}[X_{n+1}|X_1, ..., X_n] = X_n \]
Introduce Azuma-Hoeffding’s inequality

- Assume X_1, \ldots, X_n are Martingale differences, then S_n is Martingale, where

$$S_n = X_1 + \ldots + X_n$$

$$\mathbb{P}[S_n \geq \epsilon] \leq e^{-\frac{\epsilon^2}{\sum_{i=1}^{n}(b_i-a_i)^2}}$$

Regret analysis of UCB

Recall that we want to bound

$$\hat{Q}_t(a) = \frac{1}{N_t(a)}(R_a + \sum_{i=k+1}^{t-1} \mathbb{I}_{A_i=a} R_i)$$

Let

$$S_t = (R_a + \sum_{i=k+1}^{t-1} \mathbb{I}_{A_i=a} R_i)$$

Subtract the mean to make it zero mean

$$R_a - \mu_a + \sum_{i=k+1}^{t-1} \mathbb{I}_{A_i=a} R_i - \mathbb{E}[\mathbb{I}(A_i = a)R_i|\text{History}_{i-1}]$$

We know from UCB that $\mathbb{I}(A_i = a)$ is fixed

Let $X_i = \mathbb{I}(A_i = a)R_i$ conditioned on $X_1 \ldots X_{i-1}$

For those i where $A_i = a$ we set $b_i = 1$ $a_i = 0$.

$$R_a - Q(a) + \sum_{i=k+1}^{t-1} \mathbb{I}(A_i = a)(R_i - Q(a))$$

is martingale and so with probability $1 - \frac{\delta}{\pi^2}$

$$|R_a - Q(a) + \sum_{i=k+1}^{t-1} \mathbb{I}(A_i = a)(R_i - Q(a))| \leq \sqrt{2N_t(a) \log \frac{kT}{\delta}}$$

Take union bound over all $a \in A$, all t, $k+1 \leq t \leq T$, with probability $1 - \delta$

$$\sup_{t,a} \frac{1}{N_t(a)}|R_a - Q(a) + \sum_{i=k+1}^{t-1} \mathbb{I}(A_i = a)(R_i - Q(a))| \leq \sqrt{2 \log \frac{kT}{\delta}}$$

Let us define the UCB

$$\overline{Q}_t(a) = \hat{Q}_t(a) + \sqrt{\frac{2 \log \frac{kT}{\delta}}{N_t(a)}}$$
\[Q(a^*) - Q(A_t) = Q(a^*) - \bar{Q}_t(a^*) + \bar{Q}_t(a^*) - \bar{Q}(A_t) + \bar{Q}(A_t) - Q(A_t) \]

where the first term \(\leq 0 \), the second \(\leq 0 \) by UCB, and the last term, by concentration, \(\leq 2 \cdot \epsilon \)

Define
\[\Delta_a = Q(a^*) - Q(A_t) \]

\[
\text{Regret} = \sum_{a=1}^{k} \Delta_a + \sum_{t=k+1}^{T} Q(a^*) - Q(A_t) \\
\leq K + \sum_{t=k+1}^{T} 2\sqrt{\frac{2 \log \frac{2Tk}{\delta}}{N_t(A_t)}} \\
= K + 2\sqrt{2 \log \frac{2Tk}{\delta}} \sum_{a=1}^{k} \sum_{i=1}^{N_t(a)} \frac{1}{\sqrt{i}} \\
\leq K + 4\sqrt{2 \log \frac{2Tk}{\delta}} \sum_{a=N}^{k} \sqrt{N_t(a)} \\
\leq k + 4\sqrt{2 \log \frac{2Tk}{\delta}} \sqrt{KT} \\
\text{by Cauchy-Schwarz} \\
= K + c\sqrt{KT \log \frac{2Tk}{\delta}} \\
\]

Gap dependent analysis to obtain a tighter bound:

Claim: \(N_t(a) \leq 2\sqrt{\log \frac{2Tk}{\Delta^2}} \)

Substitute above to get bound.

7.1.4 Summary of Regret Bounds in Multi-Armed Bandits

Let \(\tilde{O} \) hide constant log factors.

- Explore-First
 \[\tilde{O}(T^{2}k^{\frac{1}{2}}) \]

- Epsilon greedy
 \[\tilde{O}(T^{2}k^{\frac{1}{2}}) \]

- UCB
 \[\tilde{O}(\sqrt{TK}) \]
7.2 Linear bandits: Multi-Armed Bandits with an infinite number of actions

- Each action is determined by a feature vector
- Action space is a compact set $A \subset \mathbb{R}^d$
- Reward is linear with noise: $R_t = \langle A_t, \mu^* \rangle + \eta_t$, where η_t independent and σ^2 subgaussian.
- Agent chooses a sequence of actions $A_1...A_T$
- Regret is defined as:

$$
\text{Regret}_T = T \cdot \langle a^*, u^* \rangle - \sum_{t=1}^{T} \langle A_t, u^* \rangle
$$

Note that in the textbook the notation is different: $A_i = D$, $a = x$

7.2.1 The LinUCB algorithm: Optimism in the Face of Uncertainty

- Consider the ridge regression at each time t

$$
\hat{\mu}_t = \arg\min_{\mu \in W} \sum_{i=1}^{t-1} (r_i - \mu^T x_i)^2 + \lambda \|\mu\|^2
$$

Note that there is a closed form solution $\hat{\mu}_t = \Sigma_t^{-1} \sum_{i=1}^{t-1} x_i r_i$ where Σ_t is defined below

- Construct high probability confidence set of the parameter vector

$$
\text{Ball}_t = \{\mu | (\mu - \hat{\mu}_t)^T \Sigma_t (\mu - \hat{\mu}_t) \leq B_t\}
$$

where $\Sigma_t = \sum_{i=1}^{t-1} x_i x_i^T + \lambda I_d$

- Choose actions that maximize the UCB

$$
x_t = \arg\max_{x \in D} \max_{\mu \in \text{Ball}_t} \langle x, \mu \rangle
$$