Deep Learning meets Nonparametric Regression: Are Weight Decayed DNNs locally adaptive?

Yu-Xiang Wang Joint work with Kaiqi Zhang —

Computing. ReInvented.

Outline

- Motivation
 - Mysteries around deep neural networks
 - Probe it from nonparametric regression angle
- Warm-up
 - 2-layer NN with weight decay vs LAR Splines
- Main results
 - L-layer parallel NN vs Sparse Linear Regression
 - Error bound and discussion
- Proof sketch

Al- Machine Learning has revolutionized almost every aspect of our daily life

Deep Neural Networks (DNN) is the main workhorse behind many breakthroughs.

Feedforward Neural Net (FFN)

 also known as multilayer perceptron (MLP)

 $x \in \mathbb{R}^d$

$$h_1 = \sigma(w_1 \cdot x + b_1) \in \mathbb{R}^{d_1}$$
$$h_l = \sigma(w_l \cdot h_{l-1} + b_l) \in \mathbb{R}^{d_l}$$

 $o = \text{Softmax}(w_L \cdot h_{L-1} + b_L)$

Parameters

$$\theta = \{w_1, b_1, w_2, b_2, \dots\}$$

Slide / illustration taken from Lecture 5 of my course with Lei Li.

From the statistical point of view, the success of DNN is a mystery.

- Observe that:
 - Way more parameters than you have data to fit them
 - Appears to not follow classical Bias-Variance tradeoff

(Figure from Belkin et al. (2018) "Double Descent")

 Highly nonconvex, yet optimization seems to be easy with SGD

Why do Neural Networks work better?

- Universal function approximation (Hornik et al, 1989)
 - But so are kernels and splines!
- Flexible representation and modelling language
 - So are graphical models / probabilistic programs
- Overparameterization
 - Neural Tangent Kernels (Jacot et al., 2018; Du et al. 2019; etc)
 - Interpolation regime / benign overfitting (e.g., Bartlett et al. 2020)

The "adaptivity" conjecture

- Neural networks aren't stronger than classical methods in any specific problem
- But the standard practices of how people develop / train DNNs enjoy strong adaptivity
 - No need to carefully specify the problem
 - Automatically choose the right level of abstraction
 - Tune only standard hyperparameters.
 - They match the best classical methods on each problem

Locally adaptive nonparametric regression

- Some parts smooth, other parts wiggly.
 - Wavelets [Donoho&Johnston,1998], adaptive kernel [Lepski,1999], adaptive splines [Mammen&Van De Geer,2001], Trend filtering [Steidl,2006; Kim et. al. 2009, Tibshirani, 2013; W.,Smola, Tibshirani, 2014], adaptive online local polynomials [Baby and W., 2018/19]
 - a.k.a, multiscale, multi-resolution compression, used in JPEG2000.

NTK are strictly suboptimal for locally adaptive nonparametric regression

• Observations: $y_i = f_0(x_i) + \epsilon_i, \quad i = 1, ... n$

• TV-class:
$$\mathcal{F}_k = \{f : \mathrm{TV}(f^{(k)}) \le C\}$$

- Minimax error rate: $O_{\mathbb{P}}(n^{-(2k+2)/(2k+3)})$
- Best achievable rate for linear smoothers (e.g., any kernel ridge regression, including NTK)

$$O_{\mathbb{P}}(n^{-(2k+1)/(2k+2)})$$

10

Are DNNs locally adaptive? Can they achieve optimal rates for TV-classes / Besov classes?

Doppler-like functions Free knots Splines with adaptive orders

Are DNNs locally adaptive? Can they achieve optimal rates for TV-classes / Besov classes?

- Existing work:
 - Suzuki (2019): Specific ReLU NN achieves minimax rate for Besov classes. (albeit with width, depth, sparsity constraints tailored to each problem)
 - Liu, Chen, Zhao, Liao (2021): ConvResNets works too. No sparsity, but similarly requires the number of parameters to be small.
 - Parhi and Nowak (2021): 2-layer NN is equivalent to Locally Adaptive Regression Splines (LAR Splines)

Our results: Parallel Deep NN achieves near-optimal local adaptive rates, simultaneously for many classes

- Tuning only weight decay / no architecture search.
- Depth is important. Implicit sparsity solves both representation learning and overparameterization.

*Disclaimer: We ignore computation and focus on understanding the statistical property of the ERM.

Outline

- Motivation
 - Mysteries around deep neural networks
 - Probe it from nonparametric regression angle
- Warm-up
 - 2-layer NN with weight decay vs LAR Splines
- Main results
 - L-layer parallel NN vs Sparse Linear Regression
 - Error bound and discussion
- Proof sketch

Background: DNN with "ReLU" activations and Weight Decays

• ReLU (Rectified Linear Unit activation)

ReLU

"Weight decay" == L2 Regularization

 $\max(0, x)$

$$\nabla_{\theta} \left(\mathcal{L}(\theta) + \frac{\lambda}{2} \|\theta\|^2 \right) = \nabla \mathcal{L}(\theta) + \lambda \theta$$

Gradient Descent:

"Weight decay"

$$\theta_{t+1} = \theta_t - \eta (\nabla \mathcal{L}(\theta_t) + \lambda \theta_t) = (1 - \eta \lambda) \theta_t - \eta \nabla \mathcal{L}(\theta_t)$$

Background: Splines are piecewise polynomials

- Where to choose knots?
 - **Smoothing splines:** choose n of them, one on each input data point and do L2 penalty on the coefficients
 - LAR splines: select a sparse number of them using L1penalty.
 - Free-knot splines: fix the number of knots, but optimize over where to put them.

Observation: Two-layer NNs **are** approximating Free-Knot Splines

- Neural networks $f(x) = \sum_{j=1}^{M} v_j \sigma^m (w_j x + b_j) + c(x),$
- Splines / truncated power-basis

$$f(x) = \sum_{j=1}^{M} c_j \sigma^m (x - t_j) + \tilde{c}(x)$$

- Only difference
 - Trend filtering / smoothing splines fixed the knots at input data points
 - NN left them freely moving, i.e., free-knot splines (Jupp 1978; Kass et al. 2001)

Weight decay = Total Variation Regularization $\int_{f(x)}^{M} = \sum_{w \in T} w = \int_{0}^{m} w = h(w, x + h) + c(x)$

Neural networks

$$f(x) = \sum_{\substack{j=1\\M}}^{M} v_j \sigma^m (w_j x + b_j) + c(x),$$
$$= \sum_{\substack{j=1\\j=1}}^{M} c_j \sigma^m (x - t_j) + \tilde{c}(x)$$

Weight decay

$$\min_{\boldsymbol{w},\boldsymbol{v}} \hat{L}(f) + \frac{\lambda}{2} \sum_{j=1}^{M} (|v_j|^2 + |w_j|^{2m}) = \lambda \sum_j |c_j| = \mathrm{TV}(f^{(m)})$$

At the optimal solutions

- AM-GM inequality $|v_j|^2 + |w_j|^{2m} \ge 2|v_j||w_j|^m = 2|c_j|$
 - Observed by (Neyshabur et al., 2014), (Parhi and Nowak, 2021), (Tibshirani, 2021) etc...

Two-layer Weight-Decayed NN is equivalent to LAR Splines (Parhi and Nowak, 2021) when mildly overparameterized

- When the number of knots M > n- m
 - Banach space representer Thm (Theorem 8 of Parhi and Nowak, 2021)

$$\min_{\boldsymbol{w},\boldsymbol{v}} \hat{L}(f) + \frac{\lambda}{2} \sum_{j=1}^{M} (|v_j|^2 + |w_j|^{2m}) \iff \min_{\substack{f \\ \boldsymbol{v}}} \hat{L}(f) + \lambda T V(f^{(m)}(x)),$$

over all functions!

• By Mammen and Van De Geer (1997)

$$MSE(\hat{f}) = O(n^{-(2m+2)(2m+3)}).$$

The equivalence is also valid empirically.

(Example for 2 layer ReLU NN + weight decay from Fig 6 of our paper)

Still slightly unsatisfactory, because...

- Non-typical activation functions / regularization
 - Choice tied to a particular function class
- (Almost) no representation learning
 - Except learning where the knots are
- Not stable when made deeper

Outline

- Motivation
 - Mysteries around deep neural networks
 - Probe it from nonparametric regression angle
- Warm-up
 - 2-layer NN with weight decay vs LAR Splines
- Main results
 - L-layer parallel NN vs Sparse Linear Regression
 - Error bound and discussion
- Proof sketch

L-Layer Parallel Neural Networks

 $\min_{f_j} L(\sum_j f_j) + \lambda \sum_{\ell=1}^{L} \sum_{j=1}^{M} \|\mathbf{W}_j^{(\ell)}\|_F^2.$

(a) Parallel NN with Weight Decay

(Ergen&Pilanci, 2021; Haeffele & Vidal, 2017). Also, SqueezeNet, ResNeXT etc.

Weight decayed L-Layer PNN is equivalent to Sparse Linear Regression with learned basis functions

 $\min_{f_j} L(\sum_j f_j) + \lambda \sum_{\ell=1}^L \sum_{j=1}^M \|\mathbf{W}_j^{(\ell)}\|_F^2.$

(a) Parallel NN with Weight Decay

(b) Sparse Regression with Learned Representation

$$\begin{aligned} \arg\min_{\{\bar{\mathbf{W}}_{j}^{(\ell)}, \bar{\boldsymbol{b}}_{j}^{(\ell)}, a_{j}\}} \hat{L}\left(\sum_{j=1}^{M} a_{j} \bar{f}_{j}\right) &= \frac{1}{n} \sum_{i} (y_{i} - \bar{f}_{1:M}(\boldsymbol{x}_{i})^{T} \boldsymbol{a})^{2} \\ s.t. \|\bar{\mathbf{W}}_{j}^{(1)}\|_{F} \leq c_{1} \sqrt{d}, \forall j \in [M], \\ \|\bar{\mathbf{W}}_{j}^{(\ell)}\|_{F} \leq c_{1} \sqrt{w}, \forall j \in [M], 2 \leq \ell \leq L, \quad \|\{a_{j}\}\|_{2/L}^{2/L} \leq P' \end{aligned}$$

Formal setup / notations

- Function classes
 - Bounded Variation class: $BV(m) := \{f : TV(f^{(m)}) < \infty\}.$
 - Besov class $B_{p,q}^{lpha}$ d-dimensional
 - Connections: $B_{1,1}^{m+1} \subset BV(m) \subset B_{1,\infty}^{m+1}$
- Metric $\operatorname{MSE}(\hat{f}) := \mathbb{E}_{\mathcal{D}_n} \frac{1}{n} \sum_{i=1}^n (\hat{f}(\boldsymbol{x}_i) f_0(\boldsymbol{x}_i))^2.$
- Problem setting:
 - Fixed design, subgaussian noise

Main theorem: Parallel ReLU DNN approaches the minimax rates as it gets deeper.

	Minimax Rate	Minimax Linear Rate	
Besov Space	$n^{-rac{2lpha}{2lpha+d}}$	$n^{-rac{2lpha-1}{2lpha+d-1}}$	
Bounded Variation	$n^{-rac{2m+2}{2m+3}}$	$n^{-rac{2m+1}{2m+2}}$	

• Theorem 2: Besov space $B_{p,q}^{\alpha}$

$$MSE(\hat{f}) = \tilde{O}\left(n^{-\frac{2\alpha/d(1-2/L)}{2\alpha/d+1-2/(pL)}}\right) + O(e^{-c_6L})$$

• **Corollary 3** for *BV*(*m*) class:

$$MSE(\hat{f}) = \tilde{O}(n^{-\frac{(2m+2)(1-2/L)}{2m+3-2/L}}) + O(e^{-c_6L}),$$

Arbitrarily close to the minimax rates when we choose L = C log n.

Many interesting insights we can read off from the theorem

- 1. Formal separation from kernels (NTK or other kernel ridge regressions)
 - Our upper bound + Donoho, Liu, MacGibbon (1990)'s linear smoother lower bound.
- 2. Deep NNs achieve smaller error than shallow NNs
- 3. Overparameterization does not cause overfitting
 - Number of params p >> n in this problem

Comparing to classical nonparametric regression methods

$\hat{f}(x) = \sum_{i=1}^{M} g_i(x)c_i$		LAR Splines / Trend filtering	Wavelet smoothing	Parallel DNN
$[g_1,,g_M]$	Basis functions	Hard-coded for each order of smoothness	Hard-coded to the chosen wavelets	Parametric and learned from data.
$c_{1:M} \in \mathbb{R}^M$	Coefficient vector	L1-sparsity	L1 or LO- sparsity	Lp sparsity (p=2/L)

- DNNs adapt to different function classes
 - By overparameterizing / learning representation and tuning regularization weight via cross-validation (implicitly selecting a few basis functions!)
 - Paying almost no statistical price!

Examples of Functions with Heterogeneous Smoothness

Fitted functions with optimally tuned parameter

MSE comparison over effective degree of freedom

Learned basis functions. Only a handful that are active, i.e. sparsity. Lottery ticket?

Examples of Functions with even more Heterogeneous Smoothness

Fitted functions with optimally tuned parameter

MSE comparison over effective degree of freedom

Learned basis functions. Only a handful that are active, i.e. sparsity. Lottery ticket?

1.0

0.8

Outline

- Motivation
 - Mysteries around deep neural networks
 - Probe it from nonparametric regression angle
- Warm-up
 - 2-layer NN with weight decay vs LAR Splines
- Main results
 - L-layer parallel NN vs Sparse Linear Regression
 - Error bound and discussion
- Proof sketch

Proof sketch

• Step 1: Proposition 14: Fast rate in Fixed Design with an unregularized Nullspace

$$MSE(\hat{f}) = O\left(\underbrace{\inf_{f \in \mathcal{F}} MSE(f)}_{\text{approximation error}} + \underbrace{\frac{\log \mathcal{N}(\mathcal{F}_{\parallel}, \delta, \|\cdot\|_{\infty}) + d(\mathcal{F}_{\perp})}_{\text{estimation error}} + \delta}_{\text{estimation error}}\right)$$

- Standard self-bounding arguments
- But need to handle various technical issues

Step 2: Approximation Error Bound

- Proposition 7: Each subnetwork can approximate a cardinal B-spline basis for all orders, with scaling / shift
 - Techniques of Yarotsky [2017] with some extensions

- Proposition 8: Sparse combination of cardinal B-spline wavelets approximates all functions in Besov space.
 - Techniques from (Dung, 2011) and (Suzuki, 2019)

Step 3: Metric Entropy of the Lp norm bounded combinations of ReLU NN

Lemma 6. Bounding covering number of L_p sparse combinations

$$\mathcal{N}(\mathcal{G}, \delta) \lesssim \delta^{-k} \log(1/\delta)$$

$$\mathcal{F} = \left\{ \sum_{i=1}^{M} a_i g_i \middle| g_i \in \mathcal{G}, \|a\|_p^p \le P, 0$$

• Then $\log \mathcal{N}(\mathcal{F}, \epsilon) \lesssim k P^{\frac{1}{1-p}} (\delta/c_3)^{-\frac{p}{1-p}} \log(c_3 P/\delta)$

- Note the independence to the number of subnetworks. It can be **arbitrarily overparameterized**!

- But our bound requires only M to be mildly over-parameterized.

Summary of take-home messages

- Separation from kernel methods
- Depth advantage
- Adaptivity advantage
 - Tuning weight decay is all that is needed
- Implicit sparsity in a learned dictionary space
 - Computational benefits in deployment time?

Future work

- Formalizing the sub-region local adaptivity
- Non-parallel NNs with weight decay
- Locally adaptivity in transformed space, e.g., Fourier domain (CNNs?)
- Multi-task setting ⇔ Dictionary learning?
- Biological neural science interpretation (Michael Beyeler has some thoughts)

Thank you for your attention!

- References:
 - Zhang and W. (2022) "Deep Learning Meets Nonparametric Regression" https://arxiv.org/abs/2204.09664
 - Suzuki (ICLR'2019) https://arxiv.org/abs/1810.08033
 - Parhi and Nowak (JMLR'21) <u>https://jmlr.org/papers/v22/20-583.html</u>
- Work partially supported by NSF
 - SCALE MoDL: The Adaptivity of Deep Learning

10-

