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revolutionized almost every aspect of
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MIL is capable of fitting very complex
functions for accurate predictions,

and generalize.

Learning
algorithm

Statistical Learning Theory:
Accurate prediction when new data
are from the same distribution.

It’s a “Cat”!



Examples of typical real-life ML
application

* Hospitals need to decide who to * Large tech wants to improve user
test based on symptoms and other experience on their popular email
patient attributes service

i Taco Tuesday

2 Jacqueline Bruzek

. Taco Tuesday

Hey Jacqueline,

Haven't seen you in a while and | hope you're doing well.

Let's get together soon for tacos. If you bring 1

* Train a classifier on historic records

to predict the test outcome. * Train a large language model with

* The accuracy is high on a holdout user data to complete sentences

l
set! * It seems to work great!

What could go wrong? 4




Challenge #1: Learning to Act -- Every
machine learning problem is secretly a

control problem

* |f | test patients using the
new rule, the distribution
of patients receiving the
test will be different!

e Should I still trust my
classifier?

* If | deploy the new “Guess

what you will write”
prompt, what users will
enter may change!

* |s the model fulfilling its
own prophecy?

The ultimate goal is NOT prediction, but to:
minimize disease transmission / maximize user experience!

Why not model everything as a Reinforcement Learning problem instead?




Challenge #2: Distribution shifts
“Change is the only constant in life”

Train Test
i aakot

® e o oo o - x
°‘oigi?\-m "o..w

o A [} A
° °® Py o®

..... o0 e
® o0 o o0 e o0 o oo

° ° °

oo _%, ee _%e t t
® ® o ® ® o,
o o o o W

* Viruses mutate. A drug that passes a clinical trial in 2020 may
become ineffective in 2021.

* Trendy topics change over time. Language models trained on
older data may struggle to remain relevant.

» Stock prices are affected by events. A trading strategy can work
amazingly well in one period but fail miserably when market

condition changes.

We should be able to detect and track the changes somehow!



Two different types of
nonstationarity

1. The distribution shift caused by our actions / new
policies
* Predict and control the changes

2. Unknown distribution shift happening in the
background, due to unobserved and
unpredictable factors

* Tracking the changes, adjust models accordingly



Remainder of the talk

1. Controlling the Nonstationarity with offline
reinforcement learning

2. Tracking unknown nonstationarity with dynamic
regret minimization



Reinforcement learning is among
the hottest area of research in ML!

: | DEEPMIND Al
LEARNED HOW TO WALK

“RL” is Top 1 Keyword at NeurlPS’2021, appearing 199 times
“Deep Learning” only 129 times [source] ;


https://guoqiangwei.xyz/neurips2021_stats/neurips2021_submissions.html

In real-life applications, we have
limited access to the environment.

reward action
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* Exploration is often costly, unsafe, illegal, ...
 “Drive off road and crash the car to learn it’s a bad idea”
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RL in practice always starts with an
existing dataset => Off

» Two typical tasks are: OPE and Offline Learning

Existing Offline Policy Evaluation (OPE)

deployed

system |:> Value of a fixed policy 7T
logged data

l (State, Action, lr: Near-Optimal Decision
Reward, Next State)} ) A
H Policy 171

Offline (Policy) Learning

Environment

*Notation: v” := E.[Total Reward] Optimal policy 7" := arg max V™
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Applications in Healthcare

* Learning / Improving Personalized Treatment Plan
e State: Measurements
* Action: Medication
* Reward: Surviving / reduced tumor size

* Health Monitoring with Wearable Devices Data
* State: Heart rate, step count, sleep time, ...
* Action: Get a test or wait
 Reward: How early is the disease detected



What makes offline RL different
from supervisec \earning? "

lllustration of a Markov Decision process y’@
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Supervised Learning Offline Reinforcement
Learning

1
-V , _ ) -
Evaluation n Zl=1:n f(yu T[(xl)) Why is OPE challengmg.
Try it!
ERM + Uniform . )
Learning ERM = Max OPE” ?

Convergence

Even OPE is challenging because new policies change the states to visit!
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Offline RL is fundamentally a causal
inference problem with observational
data.

* OPE < Avg Treatment Effect Estimation
e Offline Learning <~ Selecting the Best Treatment

* Main differences:

 RL assumes a model “Markov Decision Process”, which
assumes away ignorability.

 RL involves H rounds of decisions.



Naive Importance Sampling .,
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Marginalized Importance Sampling
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Sequentially estimating the induced marginal state-action visitation

T=> see

A

. dy (s, a) .
* MIS uses weight 0 (1. ar) to avoid the curse of

horizon.

(Xie, Ma & W., NeurIPS’2019; Yin & W., AISTATS’2020)
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Our results on offline RL

* Optimal {OPE, uniform OPE, offline RL, offline reward- MingYin
free RL, offline RL with linear function approx...}

Optimal bound for OPE

Py ah|3h) 1 1
E[(0Tnis — Z Z d” 1(anlsn) -Var [(Vthl 3211 +rl(z) = Sh ah = ah}
h 0 Sh,ah
+0(n 1)
2
m| = H (Xie, Ma & W., NeurlPS'19)

Or if in a simplified expression: |V, — v T
m (Yin & W., AISTATS-20)

Optimal bound for Offline Learning via local Uniform OPE

2 3
T = arg maﬁc VP MIS T R < H
T nd

(Yin, Bai & W., AISTATS’21)

*Uniform coverage condition: d!, := rtnln di (s, a)
S,a



Per-instance optimal oftline
earning?

/ Ming Yin
Results under different exploration assumptions
and special properties of the MDPs.
Uniform Visitation Adaptive Domain
3 Single Concentrability
6 H H @\ H3
n dm ~< ’H?’SC*> 0(2 Tl'dm>+0<n'dm>
(0 h=1
n
\ (Yin, Bai & W., 2021) (Zanette and Brunskill, 2019)/
(RZMJR 2021)
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Per-instance optimal offline
earning?

Ming Yin
/ “Pessimism is all you need” (Yinand W, NeurlPs-21)
Intrinsic Offline Learning Bound
i > Gnan) P i 1) L
Sh, A = +0(1/n
L L d (sn, ap) n
Uniform Visitation Adaptive Domain
~< o3 ) Single Concentrability )
= Qp ~( H°
n-d, * 0 —— |+ 0
o) ]
\ (Yin, Bai & W., 2021) (Zanette and Brunskill, 2019)/
(RZMJR 2021)
Strongest (most adaptive) result in offline RL to date!
(Extension to linear function approximation, ICLR’22; .

for representation learning, in the pipeline)



What if the optimal policy visits
states never seen in the data”

* Lazy answer: “Optimal policy not measurable”

* “Maybe we could still learn something?”

dy (Sn.an) n

T
T \ )
Pessimism VI |
Regret / performance difference

_ ~ Varp (Vag1+7h) 1
vn < min UTL' + 0 <Zl;ll=1 Zsh,ah dfrf(sh) ah)\/ S th T

Arbitrary comparator policy

“Learn as much as we can. ldentify the best policy identifiable! ”
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MIS and Pessimism are used in the
empirical side of offline RL too!

* Marginalized importance sampling

* Overcome the Curse of Horizon by explicitly estimating
the state-distribution induced by each policy.

* Correcting the distribution-shift by reweighting
* DICE family of methods. (Nachum, Dai, et al.)

* Pessimism in Value iterations / Q-Learning
* Very popular in deep RL

* Various ways of implementing pessimism is the SOTA in
applied offline RL

(see Levine et al.)



Checkpoint: Learning to Act
with Offline RL

* A perspective that is largely missing from classical statistical
learning theory

Ming Yin

 We built a theoretical foundation for offline RL
« OPE (ICML’19, AISTATS’20)
e Uniform OPE (AISTATS’21, NeurlPS’21)
e Offline Learning (NeurlPS’21 * 2, ICLR’22)

* Extensions to various settings: function approximation,
representation learning, reward-free case, etc...

* Still a very young field.
* A lot of opportunities of new theory / applications
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Online RL vs Offline RL, revisited

- Online RL Offline RL

~ H35A A ( H3 ) «“ . ”
Sels 0 ( . ) 0 2a,.) O Best effort learning
Complexity when d,,, too small
Algorithmically enforce Assume “Good Exploration”
“Good Exploration” or weaken goal
T rounds of 1 round of
adaptivity. adaptivity.

One per iteration!

Anything in between?

Environment

23



Emerging new setting between
online and oftline RL

RL with low switching cost

Offline Decision

R

Collect new data

Can we solve exploration with a small number of policy changes?

K=0(log T) (Bai, Xie, Ji W., NeurlPS’19
Near optimal regret / sample Oflog T) (Bai, Xie, Jiang, W., NeurlPS'19)

complexity, but with: K=0O(loglog T) (Qiao, Yin, Yin and W., arxiv 2022)

24



Remainder of the talk

2. Tracking unknown nonstationarity with dynamic
regret minimization



Existing methods for handling
nonstationarity often make strong
assumptions about the world.

Covariate Shift Label Shift

q(x,y) = q(x)p(y|z) q(z,y) = q(y)p(x|y)

Causal Learning Anti-causal Learning

- y
X @ 0
. @ I id
id N, N
N, N, :

Concept Shift changes ¢




Non-stationarity in practice is
continuously happening and is a mix
of all kinds of shifts at once. o

TSLA 5/13/2020 RECESSION

Tesla stock price 2011-2021

(taken from Reddit)

2011 2012 2013 2014 2015 2017 2018 2019

2016 2020 | LINEAR

Trend Step change Shift in variance

27



Can we handle nonstationarity
without modeling the world? Yes, by
Dynamic Regret Minimization

The Online Learning setting
@ Foreacht e [n]:={1,...,n}, learner predicts x; € D C RY.

@ Adversary reveals a loss function f; : R — R

Example: f,(x) = (StockPrice, — Feature; z)?

Goal: Learner aims to control its dynamic regret against any sequence
of comparators wy,... w, where w; €¢ W C D for all t.

Ro(Wi,...,wp) =) fi(X;) — fi(wy),
=1




Dynamic regret is parameterized
by the total variation of the
comparator sequence

n
Cn(Wq,...,Wp) = ZH Wi — W[4 Dheeraj Baby
t=1

Theorem (Baby and W., 2021)

For exp-concave losses, there is an efficient online algorithm, s.t.

mn n
1/3 2/3
> felz) < min Y fi(we) + 00 ECh(wr, ..., w,) )
t=1 | DU =1 P Y )
| |
Our performance Comparator performance Dynamic regret

* Solves a problem opened for 17 years since Zinkevich (2003)
* COLT’21 Best Student Paper award
* Technically interesting and novel.
29




This is a change of paradigm in
how we handle non-stationarity

 Covariate shift / label shift / Concept shift

* Measure the differences in how much the distribution
has changed

* Need data points from target distributions

* We measure non-stationarity in how much our
model need to change to predict well.

30



Why is t
powerfL

Nis new paradigm

|7

* It is fully agnostic and it does not make
assumptions about the type of non-stationarity

Covariate Shift

g(xz,y) = q(x)p(yle)  q(z,y) = q(y)p(z|y)

Trend Step change Shift in variance

Label Shift

Time

* Optimally compete with your favorite sequence
chosen in hindsight

/////////////

V 18029764

e ’,/A.i/—ﬂom\.v,v\,_,_/m"/
2011 2012 2012

-
Total Variation = O(1)

LLLLLLL
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Application to “Online Trend Removal”
in COVID hospitalization forecasting

Daily COVID cases in. Florida

200001 ground truth
-~ holt es
» 15000 — aligator(hedged)
() : :
A : :
© A : :
O | s
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5 ¥
o | ][ | :
Q | ¥ | :
“~ 5000 \ ? N | :
ECLAIM At i
\ ny ! 1.:.
04 ' : ; &
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° @‘03 o N W‘D e i 4 o e \00.1 o wqx ‘_969.0 680.1 o

(Baby, Zhao and W., AISTATS’21)
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So what is the algorithm?

e Key intuition: How much past data to use?

Trend Step change Shift in variance

-
—_

Time

* Why not use all window sizes? Start a new learner
every day and “Hedge” over them with an ensemble
meta-learner.

e Computational / memory constraint? Use a geometric
cover: O(n"2) =» O(n log n) time, O(n) = O(log n) space

33



Proof highlig
Strongly Ada

nts: Adaptive Regret and

otive Online Learner

* Adaptive Regret Minimization (Hazan and Seshadhri, 2009)
(Daniely, Gonen, Shalev-Shwartz, 2015)
* Follow the Leading History (FLH)

* Our algorithm: FLH with Online-Newton-Step

* For exp-concave losses, FLH-ONS achieves an 5(1) static
regret of on all intervals at the same time!

1 Adaptive Regret

/

34



Proof highlights: Adaptive Partition

* Let the following be the offline optimal comparator

VAVANSZZEE

[?][ I 10 Il Il Il ]

f
Bin 1 Bin M

We construct a partitioning of [n] into M bins as follows
{s, 14, ..., [is, it], - - ., [Ms, My]} satisfying:

@ C; = Z,':’;_/:|Uj+1 — u;|< B/\/niwhere nj .= iy —is+1, i € [M].
o Number of bins obeys M = O(n'/3C2/°B~2/3 v 1),

Suffices to prove the dynamic regret in each bin is 0(1). 35



Proof highlights: Regret Decomposition

One-step Gradient Descent

Rn(Cp) <) Z fe(we) = felt; —nV Y fo (W)

By Strong Adaptivity Ty ; = O(B? log n).

1=1 t=14 t/:is
T4
M 1t (27
+ Z Z fe(u; — nV Z fe(4;)) — f:(4;) By Descent Lemma Ty; < _Q”v”z
i=1 t=i, t =i P 2
To i
M i
4+ Z Z fo(@) — fie(uy) By KKT conditions
i=1 t=i, ) Tz < niC? + 3)\C;
Ts.i < B? +3)C,

* T, ; is not always strictly negative. T3 ; is often very large. Turns out that there is a magical
refinement of the partition such that T, ; is sufficiently negative when we need it be.

** The first time KKT conditions across time-steps are exploited in online learning.



Checkpoint: Harnessing
Nonstationarity by Dynamic
Regret Minimization

Dheeraj Baby

e Timeline of the research

* NeurlPS’19 First ever O(n"1/3) dynamic regret for square loss in
stochastic setting

* NeurlPS’20 O(n"{1/(2k+3)}) higher-order case “Online Trend Filtering”

e COLT’21: O(n”1/3) universal dynamic regret for exp-concave losses in
full adversarial setting (COLT Best Student Paper)

e AISTATS’22: From Improper Learning to Proper learning

* In the pipeline: O(n*1/5) universal dynamic regret for TV1 for exp-
concave losses in full adversarial setting

* Intersections with time series forecasting, nonstochastic
control, reinforcement learning, pricing and so on...

37



Take home messages

* Two types of nonstationarity

* Explicitly modeling how my new policy will change the
distribution using offline RL
e Staying “pessimistic” is the key

* New paradigm in handling unknown nonstationarity
over time.

* Promising applications in healthcare.
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