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Plan today

• Why watermark AIGC?

• Robust Watermark for LLM generated text

• New challenges in Image watermarks in AI era

2



ChatGPT and other Large
Language Models

Llama Alpaca, Vicuna
RedPajama
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LLMs are very impressive and has a lot
of applications. We use LLMs everyday
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LLM can be used for malicious purposes,
e.g., fake news, frauds, scams…

5What do we do?



Solution 1: Can you distinguish 
between human and AI-generated text?

6

Machine learning is a subset of artificial 
intelligence (AI) that provides systems the 
ability to automatically learn and improve 
from experience without being explicitly 
programmed. In other words, it's a process of 
data analysis that automates analytical model 
building. Machine learning involves the 
creation and use of algorithms that can learn 
from and make decisions or predictions 
based on data…

Human ?

Machine ?

Train a machine learning model to solve Turing test?



GPT detectors are far from
satisfactory… and they can never be.
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Liang et al. 2023: https://arxiv.org/abs/2304.02819

https://arxiv.org/abs/2304.02819


Solution 2: Adding Watermark
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Image watermarking has a rich
associated history
Least Significant Bit (Wolfgang & Delp, 1996), spatial domain (Ghazanfari et al., 
2011), frequency domain (Holub & Fridrich, 2012; Pevny et al. , 2010)
ML-based approaches: SteganoGAN (Zhang et al., 2019a), Self-Supervised
Learning (Fernandez et al., 2021)

Example from Deng et al (2010) “Local histogram based geometric invariant 
image watermarking” IEEE Signal Processing

What about text? 9



Attempt 1: Inserting Watermark
into Text directly

床前看⽉光，疑是地上霜。
举头望山⽉，低头思故乡。
(此内容为李⽩原创
未经允许不得转载)
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“<POEM>. (Copyright @ Li Bai. Any illegal reproduction of 
this content will result in immediate legal action.)”



Attempt 2: Insert secret messages
in text themselves
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Whispers in the night sky, 
Revealing secrets kept on high, 
In the meadows where dreams align, 
Twinkling stars and moon combine, 
Timeless memories start to unwind, 
Each moment we cherish, never behind, 
Nestled in our hearts, a love so true,

Behold the beauty in every hue, 
Yearning for a connection that's pure,

Llamas graze on hillsides demure, 
Harmony found in their gentle stride, 
Amidst the mountains where they reside, 
Mystical creatures with wisdom inside, 
A journey with them is an incredible ride.

Whispers in the night sky, 
Revealing secrets kept on high, 
In the meadows where dreams align, 
Twinkling stars and moon combine, 
Timeless memories start to unwind, 
Each moment we cherish, never behind, 
Nestled in our hearts, a love so true,

Behold the beauty in every hue, 
Yearning for a connection that's pure,

Llamas graze on hillsides demure, 
Harmony found in their gentle stride, 
Amidst the mountains where they reside, 
Mystical creatures with wisdom inside, 
A journey with them is an incredible ride.



What are needed for a good
watermark for LLM generated text?
• Quality of generated text

• Detection guarantees
• Type I error: “No false positives”
• Type II error: “Only true positives”

• Security property (or robustness)
• Must be robust to all kinds of evasion attacks
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Robustness is needed even if no
explicit evasion attack. People won’t 
use the generated text verbatim! 
• Cropping 
• Shuffling: Move thing around
• Edits / improving
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What is a Language Model anyway?
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“Hold my ____

P(next word 𝑦! | Prompt 𝑥, previous words 𝑦":!$")
beer： 0.5

gun： 0.3

blood-pressure：
0.001

You were having a great time at
a bar. Suddenly, she showed up.
You said to your pal: .

.

.

The universe of words is called a vocabulary 𝑽

hand： 0.1



We propose GPTWatermark!

1. Randomly generate a watermark key 𝑘. Use 
watermark key to partition the vocabulary into a 
Green List of size 𝛾|𝑉| and the rest as Red List

2. For 𝑡 = 1, 2, …
1. Apply the language model to prior tokens to obtain a logit 

vector ℓ!
2. Add 𝜹 to each green list logit. Apply the Softmax operator

3. Decode the next token using the watermarked distribution !𝐩!
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Example
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“Hold my ____

beer： 0.5

gun： 0.3

blood-pressure：
0.001

You were having a great time at
a bar. Suddenly, she showed up.
You said to your pal: .

.

.

hand： 0.1

beer： 0.5

gun： 0.3

blood-pressure：
0.001

hand： 0.1

Increase the probability of green tokens slightly,
Decrease the probability of red tokens slightly.



GPTWatermark: Detection

Input: Suspect text 𝒚 = [𝑦!, … , 𝑦"]

1. Computer z-score

2.

else:
Return 1: “𝒚 is watermarked”

Return 0: “No conclusive evidence”
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What really happened behind the
scene is the following:

Prompt & Q: what is codependent and why is it bad? 
A: To define codependency as it relates to mental health, 
one has to understand what it means to be emotionally 
dependent. While a person can be dependent on another 
person for fulfillment, as evidenced through feelings of
low self-esteem and fear of loss, a codependent person 
will often keep another person in their life despite their 
poor and sometimes abusive behavior.  [continues...]

*Confidence score 0.99999999999… 
( p-value < 10e-15)
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Our watermark comes with
mathematical guarantees
• Quality guarantees:
• Watermarked LLM and Original LLM are

indistinguishable.

• Detection guarantees
• Type I error --> 0 exponentially as n gets larger.
• Type II error --> 0 exponentially as n gets larger (under

natural technical conditions)

• Provably Robust to Edits --- Twice as robust as an
popular baseline (Kirchenbauer et al. 2023)
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Zhao, Ananth, Li and W. Provable Robust Watermarking for 
AI-Generated Text [arxiv]

https://arxiv.org/abs/2306.17439


High entropy conditions help to
rule out cases like the following..
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Homophilly condition
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Increase probability of Green List tokens may lead
to decrease of # of Green List tokens!



Our watermark is robust to edits!
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Theorem: Adversary take watermarked output 𝒚,  
Adversary edits to get to a new text 𝒖. If Edit 
Distance 𝐸𝐷 𝑦, 𝑢 ≤ 𝜂, then

Adversary can have any side information, 
can even know the Green List.



Other attacks

• Paraphrasing attacks:
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GPTWatermark

“Generated 
Text with 
watermark”

Prompt: “Please paraphrase!”

“New text 
generated with 
similar quality”



Experiment

• Two long-form text datasets
• OpenGen: 3K chunks sampled from the validation split 

of WikiText-103
• LFQA: long-form question-answering dataset from

Reddit

• Three state-of-the-art public language models
• GPT2-XL: 1.5B parameters [Radford et al., 2019]
• OPT-1.3B [Zhang et al., 2022]
• LLaMA-7B [Touvron et al., 2023]
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Baseline: [KGW+23] from Tom 
Goldstein’s group
• Very similar to ours but 

Green-list depends on the 
prefix.
• Ours is provably 2x as 

robust to edits.

25



Robustness against paraphrasing
attack
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Robustness against editing attack
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Distinguishing human-written TOEFL
Essays for non-native speakers!
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Checkpoint: Provable robust 
watermarking for AI-generated text
1. We devise a rigorous theoretical framework for 

quantifying the performance drop, the correctness 
of detection, and the security property against 
edits.

2. GPTWatermark is provably robust to edits and
empirically robust to paraphrasing too!
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•Provable Robust Watermarking for AI-Generated Text
Xuandong Zhao, Prabhanjan Ananth, Lei Li, Yu-Xiang Wang. [arxiv]

https://arxiv.org/abs/2306.17439


Back to image watermarks

• Watermarking in the era of AIGC
• Fair use of digital artwork and photography: trace the 

origin of images
• AI responsibility/safety: identify synthetically generated 

content
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Recall: many existing work on
invisible watermarking.
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• DWT-DCT-SVD based watermarking
• Discrete Wavelet Transform (DWT), Discrete Cosine Transform 

(DCT), Singular Value Decomposition (SVD), watermark is 
embedded into the blocks

• RivaGAN watermarking
• Uses generative adversarial networks (GAN) for 

steganography, leveraging attention mechanisms
• StegaStamp watermarking

• Uses differentiable image perturbations in training and a 
spatial transformer network to resist small perspective 
changes

• SSL watermarking
• Networks pretrained with self-supervised learning (SSL) 

extract effective features for watermarking



Stable Diffusion incorporates 
invisible watermarking
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Is there an equivalence to 
“paraphrasing attack”?
• Midjourney,  StableDiffusion… and much older 

Variational Autoencoders (VAEs) can be used for 
“Regeneration attacks”!
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Detected

Add

Watermark

No watermark

Attacker removes
the watermark

Watermark Detector

Original Image Watermarked Image Attacked Image

Map Noise

Embedding

Undetected

Noisy Embedding

Regenerate

Figure 2: Removing invisible watermarks: The proposed first maps the watermarked image to its embedding, which is
another representation of the image. Then the embedding is noised to destruct the watermark. After that, a regeneration
algorithm reconstructs the image from the noisy embedding.

constructive attacks cannot remove resilient watermarks
easily because they are not noise-like. To counter these
attacks, learning-based watermarking methods [23, 24, 25]
were proposed which explicitly train against these known
attacks to be robust to them. But how about other attacks?
What is the end of this cat-and-mouse game?

In this paper, we ask a more fundamental question:

Is an invisible watermark necessarily non-robust?

To be more precise, is there a fundamental tradeoff between
the invisibility of a watermark and its resilience to any attack
that preserves the image quality to a certain-level.

To address this question, we propose a regeneration
attack that leverages the strengths of both destructive and
constructive approaches. The pipeline of the attack is given
in Figure 2. Our attack first corrupts the image by adding
Gaussian noise to its latent representation. Then, we recon-
struct the image from the noisy embedding using a generative
model. The proposed regeneration attack is flexible in that
it can be instantiated with various regeneration algorithms,
including traditional denoisers and deep generative models
such as diffusion [26]. Ironically, the recent advances in
generative models that created the desperate need for invisible
watermarks are also making watermark removal easier when
integrated into the proposed attack.

Surprisingly, we prove that the proposed attack guarantees
the removal of any invisible watermark such that no detection
algorithm could work. That is to say, for any watermarks
that perturb the image within a limited range of `2-distance
(which is the Euclidian distance in the pixel-space), whether
they have been proposed or have not yet been invented, our
attack is provably effective in removing them. We also show
that the image quality of the generated image is as high as
if the watermark is not added in the first place.

To validate our theory empirically, we conduct exten-
sive experiments on five widely used invisible watermarks
[23, 25, 27, 28, 29] including the ones currently used by
the popular open-source image generative model Stable
Diffusion. We compare our attack’s performance with four
baselines in terms of image quality and watermark removal.

The experiment results indicate that the proposed family
of attacks works significantly better than the baselines. For
a particularly resilient watermark, RivaGAN, regeneration
attacks remove 93-99% of the invisible watermarks while
the baseline attacks remove no more than 3%. Specifically,
when the denoising algorithm is set to be Stable Diffusion,
our attack performs the best. With the empirical results and
the theoretical guarantee, we claim that all invisible image
watermarks are vulnerable to our attack and thus should not
be considered in the settings where our attack applies.

Given the vulnerability of invisible watermarks, we try
to explore other possibilities for image watermarking. One
particular possibility that comes to our attention is the
semantic watermarks. That is to say, we no longer want
the watermarked image to look the same as the original
one. As long as the watermarked image looks similar and
contains similar content, it is considered suitable for use.
One instance of such semantic watermark is Tree-Ring [30],
which in our experiments, does show robustness against our
attack. Obviously, using semantic watermarks is not a perfect
solution because the watermark becomes somewhat “visible”.
However, with the path of invisible watermarks provably
blocked, it does shed some light on protecting the proper
use of AI-generated images.

1.1. Summary of Contributions

• We propose a family of regeneration attacks for image
watermark removal that can be instantiated with many
existing denoising algorithms and generative models.

• We prove that the proposed attack is guaranteed to
remove any pixel-based invisible watermarks against
any detection algorithms and regenerate images that are
close to the original unwatermarked image.

• We evaluate the proposed attack on various invisible
watermarks to demonstrate their vulnerability and its
effectiveness compared with strong baselines, especially
when instantiated with diffusion models.

• We explore other possibilities to embed watermarks in a
visible yet semantically similar way. Although relaxing
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Invisible Image Watermarks Are Provably Removable Using Generative AI
Zhao, Zhang, Su, Vasan, Grishcenko, Kruegel, Vigna, W. and Lei [arxiv]

https://arxiv.org/abs/2306.01953
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VAEs and diffusions are very effective
in removing all five SOTA invisible
watermarks we tested on on example:
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MS-COCO Dataset DiffusionDB Dataset
Attacker PSNR" SSIM" FID# Bit Acc# Detect Acc# PSNR" SSIM" FID# Bit Acc# Detect Acc#

DctDwtSvd watermarking:
Brightness 0.5 27.55 0.795 15.48 0.474 0.132 27.71 0.803 19.62 0.462 0.124
Contrast 0.5 26.44 0.780 12.70 0.473 0.130 26.58 0.787 17.00 0.463 0.118
JPEG 50 28.22 0.796 26.16 0.691 0.398 28.40 0.806 31.91 0.720 0.488
Rotate 90 25.41 0.756 128.45 0.356 0.000 25.51 0.763 115.26 0.366 0.000
Gaussian noise 25.02 0.736 37.94 0.996 0.996 25.13 0.744 45.78 0.989 0.988
Gaussian blur 24.99 0.742 34.09 0.999 1.000 25.10 0.750 36.60 0.999 1.000
BM3D denoise 27.66 0.783 62.59 0.577 0.090 27.94 0.795 52.21 0.623 0.190
VAE-Bmshj2018 26.95 0.767 53.64 0.528 0.006 27.25 0.780 45.74 0.538 0.006
VAE-Cheng2020 26.00 0.744 48.91 0.523 0.016 26.33 0.760 42.45 0.538 0.026
Diffusion model 25.92 0.746 46.34 0.547 0.016 26.32 0.762 48.44 0.563 0.094

RivaGAN watermarking:
Brightness 0.5 27.59 0.793 21.60 0.990 0.998 27.75 0.803 24.26 0.934 0.906
Contrast 0.5 26.48 0.779 17.95 0.993 0.998 26.61 0.788 20.79 0.934 0.904
JPEG 50 28.26 0.795 26.98 0.953 0.982 28.44 0.806 33.45 0.880 0.816
Rotate 90 25.44 0.755 129.77 0.470 0.000 25.54 0.764 116.90 0.478 0.000
Gaussian noise 25.05 0.735 38.27 0.998 1.000 25.16 0.744 45.91 0.958 0.960
Gaussian blur 25.02 0.740 38.88 0.999 1.000 25.13 0.750 39.90 0.974 0.984
BM3D denoise 27.69 0.781 63.04 0.948 0.978 27.98 0.795 53.10 0.874 0.800
VAE-Bmshj2018 26.98 0.766 53.91 0.637 0.062 27.27 0.780 45.87 0.609 0.040
VAE-Cheng2020 26.02 0.742 48.37 0.639 0.058 26.34 0.759 41.95 0.605 0.036
Diffusion model 25.93 0.743 47.60 0.590 0.018 26.33 0.762 48.61 0.567 0.010

SSL watermarking:
Brightness 0.5 27.61 0.792 23.92 0.999 1.000 27.82 0.801 29.24 0.991 0.996
Contrast 0.5 26.49 0.778 21.73 1.000 1.000 26.68 0.786 27.19 0.990 0.994
JPEG 50 28.27 0.793 33.06 0.808 0.800 28.52 0.804 37.65 0.759 0.616
Rotate 90 25.45 0.754 135.86 0.983 1.000 25.61 0.763 121.08 0.964 0.986
Gaussian noise 25.07 0.734 41.60 0.790 0.722 25.23 0.744 48.21 0.736 0.530
Gaussian blur 25.03 0.739 42.23 1.000 1.000 25.20 0.750 46.63 0.996 0.996
BM3D denoise 27.70 0.780 64.89 0.663 0.226 28.05 0.793 53.75 0.639 0.192
VAE-Bmshj2018 26.96 0.764 56.44 0.633 0.142 27.31 0.778 47.16 0.606 0.094
VAE-Cheng2020 25.98 0.740 50.66 0.637 0.154 26.34 0.757 43.40 0.608 0.124
Diffusion model 25.88 0.741 53.84 0.643 0.152 26.33 0.759 55.88 0.587 0.052

StegaStamp watermarking:
Brightness 0.5 24.66 0.737 36.71 1.000 1.000 24.56 0.737 43.12 1.000 1.000
Contrast 0.5 23.76 0.729 36.20 1.000 1.000 23.66 0.728 42.38 0.999 1.000
JPEG 50 25.20 0.735 52.93 1.000 1.000 25.10 0.736 59.80 1.000 1.000
Rotate 90 22.92 0.708 142.35 0.507 0.002 22.81 0.708 124.72 0.511 0.006
Gaussian noise 22.65 0.691 56.11 1.000 1.000 22.55 0.692 63.65 1.000 1.000
Gaussian blur 22.60 0.696 51.12 1.000 1.000 22.50 0.697 57.04 1.000 1.000
BM3D denoise 24.96 0.722 82.71 1.000 1.000 24.91 0.725 73.37 1.000 1.000
VAE-Bmshj2018 24.51 0.703 68.47 0.999 1.000 24.49 0.707 64.63 1.000 1.000
VAE-Cheng2020 23.81 0.672 62.73 1.000 1.000 23.82 0.679 60.65 1.000 1.000
Diffusion model 23.67 0.665 66.84 0.863 0.992 23.76 0.673 66.63 0.859 0.990

Stable Signature watermarking:
Brightness 0.5 28.53 0.864 11.75 0.967 0.990 28.14 0.860 16.38 0.951 0.996
Contrast 0.5 27.20 0.842 10.73 0.965 0.990 26.85 0.838 14.86 0.948 0.996
JPEG 50 29.37 0.873 15.01 0.866 0.966 28.96 0.869 19.66 0.839 0.938
Rotate 90 25.99 0.815 126.68 0.446 0.000 25.65 0.811 120.72 0.452 0.000
Gaussian noise 25.46 0.788 30.60 0.920 0.972 25.15 0.785 43.26 0.906 0.952
Gaussian blur 25.48 0.798 17.72 0.896 0.986 25.16 0.795 23.19 0.867 0.952
BM3D denoise 29.24 0.871 31.65 0.946 0.952 28.83 0.867 33.90 0.935 0.938
VAE-Bmshj2018 28.95 0.867 31.86 0.636 0.248 28.54 0.863 36.22 0.628 0.202
VAE-Cheng2020 28.67 0.864 29.43 0.682 0.442 28.28 0.861 33.89 0.655 0.334
Diffusion model 29.33 0.879 20.64 0.486 0.000 28.96 0.876 27.22 0.497 0.002

TABLE 1: Performance of attacks on different watermarking methods. The table shows attack results on MS-COCO and
DiffusionDB datasets. Image quality of attacked watermarked images is compared to clean images using PSNR, SSIM,
and FID. Watermark removal effectiveness is measured by average bit accuracy and detection accuracy under p < 0.01.
Regeneration attacks (with gray background), especially the diffusion model, consistently achieve high watermark removal
rates across schemes.
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We prove that any invisible watermark
can be removed by “regeneration attack”
by a diffusion model!

36

4. Theoretical Analysis

We show in this section that the broad family of re-
generation attacks as defined in Equation 2 enjoy provable
guarantees on their ability to remove invisible watermarks
while retaining the high quality of the original image.

4.1. Certified Watermark Removal

How do we quantify the ability of an attack algorithm
to remove watermarks? We argue that if after the attack,
no algorithm is able to distinguish whether the result is
coming from a watermarked image or the corresponding
original image without the watermark, then we consider the
watermark certifiably removed. More formally:

Definition 4.1 (f -Certified-Watermark-Free). We say that a
watermark removal attack is f -Certified-Watermark-Free (or
f -CWF) against a watermark scheme for a non-increasing
function f : [0, 1] ! [0, 1], if for any detection algorithm
Detect : X ⇥ aux ! {0, 1}, the Type II error (false negative
rate) ✏2 of Detect obeys that ✏2 � f(✏1) for all Type I error
0  ✏1  1.

Let us also define a parameter to quantify the effect of
the embedding function �.

Definition 4.2 (Local Watermark-Specific Lipschitz property).
We say that an embedding function � : X ! Rd satisfies
Lx,w-Local Watermark-Specific Lipschitz property if for a
watermark scheme w that generates xw with x,

k�(xw)� �(x)k  Lx,wkxw � xk.

The parameter Lx,w measures how much the embedding
compresses the watermark added on a particular clean image
x. If � is identity, then Lx,w ⌘ 1. If � is a projection matrix
to a linear subspace then 0  Lx,w  1 depending on the
magnitude of the component of xw � x in this subspace.
For a neural image embedding �, the exact value of Lx,w

is unknown but given each xw and x it can be computed
efficiently.

Theorem 4.3. For a �-invisible watermarking scheme
with respect to `2-distance. Assume the embedding function
� of the diffusion model is Lx,w-Locally Lipschitz. The
randomized algorithm A(�(·) + N (0,�2Id)) produces a
reconstructed image x̂ which satisfies f -CWF with

f(✏1) = �

✓
��1(1� ✏1)�

Lx,w�

�

◆
,

where � is the Cumulative Density Function function of the
standard normal distribution.

Figure 4 illustrates what the tradeoff function looks
like. The result says that after the regeneration attack, it
is impossible for any detection algorithm to correctly detect
the watermark with high confidence. In addition, it shows
that such detection is as hard as telling the origin of a single
sample Y from either of the two Gaussian distributions
N (0, 1) and N (L2

x,w�
2/�2, 1).

Figure 4: Theoretical and empirical trade-off functions of
watermark detectors after our attack. Trade-off functions
indicate how much less Type II error (false negative rate)
the detector gets in return by having more Type I error (false
positive rate). Theoretically, after the attack, no detection
algorithm can fall in the Impossibility Region and have both
Type I error and Type II error at a low level. Empirically,
the watermark detector performs even worse than the theory,
indicating the success of our attack and the validity of the
theoretical bound. The noise level � is set to 1.16�.

The proof, deferred to the end of the paper, leverages an
interesting connection to a modern treatment of differential
privacy [48] known as the Gaussian differential privacy [49].
The work of [49] itself is a refinement and generalization
of the pioneering work of [50] and [51] which established a
tradeoff-function view.

Let us instantiate the algorithm with a latent diffusion
model by choosing � =

p
(1� ↵(t⇤))/↵(t⇤) (see Algorithm

1) and discuss the parameter choices.
Remark 4.4 (Two trivial cases). Observe that when ↵(t⇤) = 0,
the result of the reconstruction does not depend on the input
xw, thus there is no information about the watermark in x̂(0),
i.e., the trade-off function is f(✏1) = 1 � ✏2 — perfectly
watermark-free, however, the information about x (through
xw) is also lost. When ↵(t⇤) = 1, the attack trivially returns
x̂(0) = xw, which does not change the performance of the
original watermark detection algorithm at all (and it could
be perfect, i.e., ✏1 = ✏2 = 0).

Remark 4.5 (Choice of t⇤). In practice, the best choice t⇤

is in between the two trivial cases, i.e., one should choose
it such that Lx,w�

p
↵(t⇤)/(1� ↵(t⇤)) is a small constant.

The smaller the constant, the more thoroughly the watermark
is removed. The larger the constant, the higher the fidelity
of the regenerated image w.r.t. xw (thus x0 too).
Remark 4.6 (VAE). Strictly speaking, Theorem 4.3 does

7
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Original Watermarked

2

≤ Δ

then



Pixel-level Invisible Watermark
Semantic-level invisible watermark
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Good example of this: “Tree ring watermark” https://arxiv.org/abs/2305.20030

From https://huggingface.co/spaces/editing-
images/project

https://arxiv.org/abs/2305.20030
https://huggingface.co/spaces/editing-images/project


Exciting new directions! A lot to 
be done in trustworthy AI.
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•Provable Robust Watermarking for AI-Generated Text
Xuandong Zhao, Prabhanjan Ananth, Lei Li, Yu-Xiang Wang. [arxiv]

•Distillation-Resistant Watermarking for Model Protection in NLP
Xuandong Zhao, Lei Li, Yu-Xiang Wang. Findings of EMNLP 2022. [arxiv]

•Protecting Language Generation Models via Invisible Watermarking
Xuandong Zhao, Yu-Xiang Wang, Lei Li. ICML 2023. [arxiv]

•Invisible Image Watermarks Are Provably Removable Using Generative AI
Zhao, Zhang, Su, Vasan, Grishcenko, Kruegel, Vigna, Wang and Lei [arxiv]

https://arxiv.org/abs/2306.17439
https://arxiv.org/abs/2210.03312
https://arxiv.org/abs/2302.03162
https://arxiv.org/abs/2306.01953


Time for more questions!
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