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ChatGPT and other Large
Language Models

Llama Alpaca, Vicuna
RedPajama
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LLMs are very useful…
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Could you generate HW2 for my machine learning please?
Make it difficult so it appears to be not AI-generated…

Certainly! Here is a difficult machine learning homework

The prof is crazy! HW2 is so difficult.
Could you write the solution for HW2 for me?

Problem 1 Solution: XXXXXXXXXX….



LLM can be used for malicious purposes,
e.g., fake news, frauds, scams…

4What do we do?



Possible solution: Can you distinguish 
between human and AI-generated text?
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The Information Theory and Applications (ITA) 
Workshop is a captivating and vibrant 
gathering that brings together some of the 
brightest minds in the world of information 
theory. This dynamic workshop serves as a 
melting pot for pioneering ideas, where 
experts and enthusiasts from various 
disciplines converge to explore the latest 
advancements in information theory and its 
myriad applications. From groundbreaking 
research presentations to thought-provoking 
discussions, ITA is not just a conference; it's a 
celebration of knowledge and innovation. 

Human ?

Machine ?

Train a machine learning model to solve Turing test?



Training classifiers to detect AI-
generated text is bound to fail!
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Liang et al. 2023: https://arxiv.org/abs/2304.02819

https://arxiv.org/abs/2304.02819


Better solution: “watermark” the
generated text…
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Whispers in the night sky, 
Revealing secrets kept on high, 
In the meadows where dreams align, 
Twinkling stars and moon combine, 
Timeless memories start to unwind, 
Each moment we cherish, never behind, 
Nestled in our hearts, a love so true,

Behold the beauty in every hue, 
Yearning for a connection that's pure,

Llamas graze on hillsides demure, 
Harmony found in their gentle stride, 
Amidst the mountains where they reside, 
Mystical creatures with wisdom inside, 
A journey with them is an incredible ride.

Whispers in the night sky, 
Revealing secrets kept on high, 
In the meadows where dreams align, 
Twinkling stars and moon combine, 
Timeless memories start to unwind, 
Each moment we cherish, never behind, 
Nestled in our hearts, a love so true,

Behold the beauty in every hue, 
Yearning for a connection that's pure,

Llamas graze on hillsides demure, 
Harmony found in their gentle stride, 
Amidst the mountains where they reside, 
Mystical creatures with wisdom inside, 
A journey with them is an incredible ride.



Existing LLM watermarking schemes

• Statistical watermarks
• Green-Red watermark (Kirchenbauer et al., 2023)
• Unigram (Green-Red) WM ( Zhao, Ananth, Li, W., 2023)

• Cryptographic watermarks
• Gumbel watermark (Aaronson, 2022)
• Undetectable WM (Christ, Gunn, Zamir 2023)

• Quite a few others in this fast-growing research area
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All existing watermarks work with 
the standard decoder: softmax(logits) 

• Temperature parameter T:
• Large T ó higher text entropy (more watermarkable)
• Small T ó higher text quality (smaller perplexity).
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1. Is softmax(logits) the optimal choice?

2. Can we benefit from co-designing the decoder and
watermarking scheme?

1 Introduction
Large language models (LLMs) (OpenAI, 2022, 2023b; Bai et al., 2022; Touvron et al., 2023) have become
increasingly popular in recent years due to their ability to generate human-like text and solve many tasks
through a natural chatbot interface.

A language model predicts the next word in a sentence using a real-value function u(·; prompt, prefix) : V ! R,
known as logits, which encodes the model’s preferences on which word to choose. Here V is the vocabulary
space (typically a large discrete set of words); the “prompt” describes the task of interest; and “prefix” includes
all preceding words that have been generated so far.

A language model decoder refers to a possibly randomized function that takes a prompt text x, API access to
the logits function as input, and outputs a sentence y1:n.

The main thrust of this paper is to introduce a new decoder, termed Permute-and-Flip decoding, work
out some of its intriguing properties with an application to watermarking LLM text, and hopefully convince
readers that it deserves a shot at your next LLM application.

2 Problem Setup and Summary of Results
Before we get into it, let us set up the stage with a quick tour to the zoo of existing decoding methods and
have a brief sneak-peek into the “jar of worms” on how a language model decoder can be evaluated.

Popular existing decoding methods fall into three categories: (1) Planning-based methods such as beam
search that aims at maximizing the sequence likelihood; (2) sampling-based methods that recursively sample
from the next-word distribution, e.g., the soft(arg)max transform of the logits

Softmax sampling: yt ⇠ p(y) =
eu(y|x,y1:t�1)/T

P
ỹ e

u(ỹ|x,y1:t�1)/T
(1)

where T is the temperature parameter; and (3) greedy methods such as greedy decoding that simply outputs
yt = argmax

y2V u(y|x, y1:t�1) as well as its Top p (Holtzman et al., 2019) and Top k sampling variants that
interpolate greedy and sampling methods.

Performance metrics. How do we compare different decoding methods? More generally, how do we
evaluate LLM-generated text? These are questions far from being settled. Naturally, if there is a (possibly
task-dependent) performance metric Ux : Vn ! R one can define, then the optimal decoder would be the one
that outputs

y
⇤
1:n = argmax

y1:n2Vn
Ux(y1:n).

Often Ux is instantiated to be the sequence likelihood
P

n

t=1 log p(yt|x, y1:t�1) which is equal to
P

n

t=1 ut(yt).

Recent works (Ippolito et al., 2019; Wiher et al., 2022), however, report that strategies that aim at maximizing
sequence likelihood often result in texts that are more repetitive and less effective in some downstream tasks
than those from the sampling-based methods (Holtzman et al., 2019). Depending on what the task is, there
is not a one-size-fits-all performance metric, therefore is no single decoding method that works well for all
tasks.

For the moment, let us stash the disputes on how to best evaluate an LLM-generated text and focus
on designing methods that maximize any user-specified utility function. In fact, we will also give up on
solving the sequence-level utility maximization problem1 and simply maximize a per-step utility function
ut : V ! R.

ut can simply be the logits function that LLMs output, which may have already accounted for potential
future utility (like the Q function in reinforcement learning) since the transformer-based language model
had access to future texts during pre-training. Or ut can be explicitly augmented with structure-inducing

1It is known to be NP-Complete (Chen et al., 2017).
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TL;DR of our results

1. We propose “Permute-and-Flip Decoding”
• PF dominates Softmax in robustness-perplexity tradeoff.

2. A cryptographic watermark for Permute-and-Flip
• Enjoys all nice properties of the Gumbel watermark
• Slightly better detectability-perplexity tradeoff
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Permute-and-Flip Sampling from 
Differential Privacy literature
(McKenna and Sheldon, 2021)
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Permute

Flip



Permute-and-Flip(logits) is very
similar to Softmax(logits)
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Permute-and-Flip does nothing but replacing Step 1 by
sampling without replacement.

Rejection sampling form of Softmax sampling



The advantage of PF Sampling is that
it gets all the nice properties of the
softmax but improves the perplexity.
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Robustness against adversarial
perturbation to the logits
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LLM
logits 𝒖

for
NextToken

logits "𝒖
for

NextToken

𝒜 𝑢 =:𝑃

𝒜 &𝑢 =: '𝑃

Definition: L-robustness.
𝒜 is L-robust if log !"

! #"
≤ 𝐿 𝛿

Adversarial Perturbation

| 𝑢 − &𝑢| ! ≤ 𝛿



Both Softmax and P&F are provably
robust, but P&F is up to 2x better 
than Softmax at “optimization”
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Theorem (McKenna and Sheldon, 2021):
1. Permute-and-Flip sampling is 1/T-robust.
2. For the same T,  PF dominates Softmax in terms of

expected suboptimality.
3. PF is Pareto-optimal in robust-suboptimality tradeoff.

Theorem (McSherry and Talwar, 2007):
Softmax sampling is 1/T-robust.



PF decoder dominates softmax
decoder for all parameter choices
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Example: Two token vocabulary, logits 𝑢 = [0, Δ].
Suboptimality: 𝑢∗ − 𝔼 𝑢



PF improves perplexity on open-
domain generation datasets
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TL;DR of our results

1. We propose “Permute-and-Flip Decoding”
• PF dominates Softmax in robustness-perplexity tradeoff.

2. A cryptographic watermark for Permute-and-Flip
• Enjoys all nice properties of the Gumbel watermark
• Slightly better detectability-perplexity tradeoff
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From Gumbel-Softmax trick to
Exponential-PF trick
• Gumbel-Softmax trick (Gumbel, 1948)

• Exponential-PF trick (Ding et. al, 2021)
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yt ⇠ Softmax

✓
ut(y)

T

◆
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✓
ut(y)

T

◆

ReportNoisyMax from Differential Privacy.



Idea to watermark PF-Decoding
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• Gumbel-Watermark (Aaronson, 2022)

• PF-Watermark (Ours) Make them
pseudo-
random!



Detection score for PF-watermark
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Algorithm 2 PF watermarking: Watermark

1: Preparation: Randomly sample a watermark key k.
2: Input: Prompt x, language model M, pseudo-random function F , watermark key k, temperature T

3: for t = 1, 2, · · · do

4: Compute logits: ut  M([x, y1:t�1])
5: Generate a pseudo-random vector rt(·) using rt(y) := Fyt�m:t�1,k(y) for y 2 V.
6: Select the next token yt using

yt = argmax
y2V

✓
ut(y)

T
� log rt(y)

◆
. (6)

7: end for

8: Output: Watermarked sequence y = [y1, ..., yn]

Algorithm 3 PF watermarking: Detect

1: Input: Suspect text y1:n, watermark key k, pseudo-random function F , target false positive rate ↵

2: Output: Binary decision (1 if text is watermarked, 0 otherwise)
3: Calculate the cumulative score

TestScorePF(y1:n) =
nX

t=m+1

� log(rt(yt)) (7)

where rt(y) = Fyt�m:t�1,k(y)
4: if TestScore > CDF�1

Gamma(n�m,1)(1� ↵) then return 1, i.e., “The suspect text is watermarked.”
5: else return 0, i.e., “The suspect text is not watermarked.”

Permute-and-Flip as ReportNoisyMax. It turns out that the Permute-and-Flip sampling has a similar
equivalent Report-Noisy-Max form. Instead of Gumbel noise, it is the exponential noise that are added to
the logits. This less-known fact is due to Ding et al. (2021)

Fact 4.2 (Ding et al., 2021, Theorem 5). Permute-and-Flip Sampling in Algorithm 1 with parameter T is
equivalent to

yt = argmax
y2V

ut(y)

T
+ Et(y). (5)

where Et(y) ⇠ Exponential(1) i.i.d. for each t, y.

Leveraging this fact, in the remainder of the section, we develop a watermarking scheme for ReportNoisyMax
that is analogous to the Gumbel-watermark.

Permute-and-Flip watermark. The natural idea is to replace the exponential noise Et(y) with a pseudo-
random version that depends on a secret key and a prefix with length m. Observe that Exponential(1) ⇠
� log(Uniform([0, 1])), thus the standard pseudo-random function that generates uniform random variables
can be used. In the detection phase, we compute:

TestScorePF(y1:n) =
nX

t=m+1

� log(rt(yt)).

Note that this is a simple change of sign of rt(yt) comparing to the test score of the Gumbel watermark.
Detailed pseudo-code for how the watermark works are given in Algorithm 2 and Algorithm 3.

Theorem 4.3. Assume the pseudo-randomness is perfect2, i.e., Fw1:m,k(y) ⇠ Unif([0, 1]) i.i.d. 8[w1:m, y] 2
Vm+1.

2This is a simplifying assumption. We only need (n�m)|V|-way independence.
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Figure 4: TestScore distribution. We calculate the average TestScore of the PF watermark and Gumbel
watermark using Llama2-7B (T=1.0) on the C4 dataset. The length of the suspect texts is fixed at 200
tokens. A clear gap emerges between positive samples (watermarked) and negative samples (unwatermarked
and human-written), indicating the watermark detectability.

Figure 5: Trade-off between detection accuracy (TPR at FPR=0.01) and text quality (PPL) across three
watermark configurations on the C4 dataset, with temperature settings ranging from 0.2 to 1.0. Each data
point represents the outcome for 500 watermarked texts. The PF watermark achieves the optimal balance of
the highest detection accuracy and lowest perplexity.

Text generation performance. Table 2 shows the text perplexity of generated samples from different
LLMs evaluated on two datasets. Using the same temperature, we find that PF decoding produces significantly
lower perplexity compared to sampling. Although greedy decoding has the lowest perplexity, it suffers from
heavy repetition, as indicated by its high seq-rep-5 score and low MAUVE score. We observe that for
question-answering tasks, the perplexity is lower, likely due to the fixed form of answers and lower entropy
of the text generation. Table 5 shows an example prompt and responses generated by different decoding
methods.

Watermarking results. We compare the results of our proposed PF watermarking method with those
of the Gumbel Watermark (Gumbel WM) and the Green-Red watermark (KGW WM). In Figure 4, we
present the distribution of detection scores for the PF watermark. The PF watermark demonstrates clear
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Guarantees of PF-watermark are
analogous to those of the Gumbel
• Distortion-free
• Computationally indistinguishable from PF-decoding.

• Precise FPR control
• TestScore/n à 1 under the null hypothesis.
• Under the null hypothesis, the test-score follows a

Gamma distribution.

• High power if generated text has high-entropy
• TestScore/n à 𝛼 for 𝛼>>1 under the alternate

hypothesis

22



How does PF-watermark compare 
to Gumbel watermark?
• Example: Two token vocabulary, logits 𝑢 = [0, Δ].
• Detectability: 𝔼[Score|WM] -𝔼[Score|No WM]
• Suboptimality: 𝑢∗ − 𝔼 𝑢
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Figure 2: Comparing the detectability of PF watermark vs Gumbel watermark using Example 4.5. On the
left, we fix the Gap � = 3.0 and vary T . On the right, we fix T = 1.0 and vary �. Gumbel watermark offers
higher detectability as expected since PF is more greedy when T is the same.

Figure 3: Comparing the detectability-greediness tradeoff of PF watermark vs Gumbel watermark in the two
token case. The Gap � = 3.0, both curves are traced out by varying the temperature T – with a “zoomed-in”
view on the RHS.

In conclusion, we showed that the watermarked version of PF-decoder is computationally indistinguishable
from the original version of PF-decoder. Meanwhile, the test score of the PF watermark is qualitatively similar
to that of the Gumbel-watermark (and identical in some cases). It is likely to produce similar detectability to
the Gumbel watermark, while enjoying the performance boost that comes from replacing softmax sampling
with PF.

5 Experiments
In this section, we conduct experiments to evaluate PF decoder’s general performance as well as its watermark
detection ability, watermarked text quality, and watermark robustness against attacks.

Datasets and models. We utilize two long-form text datasets in our experiments: the Colossal Clean
Crawled Corpus (C4) dataset (Raffel et al., 2020) for open-ended text completion generation, and the Alpaca
dataset (Taori et al., 2023) for question-answering tasks. Our primary language model is the state-of-the-art
open-source model Llama-2 with 7 billion parameters. Specifically, we use the Llama-2-7B-chat model for
question-answering tasks on the Alpaca dataset. For text completion tasks on the C4 dataset, we employ the
base model Llama-2-7B. Furthermore, to evaluate the universal applicability of smaller models, we also assess
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Proof. The theorem is entirely due to McKenna & Sheldon (2020). The five statements are directly implied
by Theorem 1, Corollary 1, Theorem 2, Proposition 4, and Proposition 6 respectively in their paper.

The first statement shows that the PF decoder enjoys exactly the same robustness parameter as in Fact 2.3.
The second statement provides a worst-case bound on how far PF-sampling is away from greedy-decoding as a
function of the temperature T in terms of the likelihood achieved. The third and fourth statements show that
PF-sampling is always “more greedy” than softmax-sampling. The last statement shows that PF-sampling is
not dominated by any other decoder that is equally robust (as in Definition 2.1), thus Pareto optimal.

These results provide strong justification on the superiority of the permute-and-flip decoder over the standard
softmax sampling in minimizing perplexity.

Let’s consider a simple example to compare PF decoder and Softmax decoder.

Example 3.2. Let the |V| = 2 and the corresponding logits be [�, 0] for gap � > 0. Softmax decoder chooses
the suboptimal token with probability 1/(1 + e

�/T ), while PF decoder chooses it with probability 1
2e

��/T .

Since 1/(1 + x) > 1/(2x) for all x > 1, the probability that the suboptimal token is chosen in PF sampling is
strict smaller than that of Softmax sampling (also see Figure 1).

Figure 1: Comparing PF decoder vs Softmax decoder using Example 3.2. On the left, we fix the Gap � = 3.0
and vary the temperature T . On the right, we fix T = 1.0 and consider vary �. PF beats Softmax in all
cases.

4 Report-Noisy-Max and Watermarking
Next we turn to the well-motivated problem of watermarking LLM generated text. The watermarking problem
aims at embedding a secret message in the generated text that (essentially) reads “Beware! I am written by
an AI!”.

The hope is that this message can be seen by anyone who has access to a secret key, while ensuring that the
watermarked version of the LLM generates text that has almost the same distribution as (or at least very
similar) to the original LLM.

More formally, a watermarking scheme includes a “Watermark” function that injects the watermark and
a “Detect” function that takes a suspect text sequence y1:n as input and outputs a prediction of 1 (“It is
watermarked!”) or 0 (“It is not!”).

A wrong accusation of non-watermarked text as watermarked is called a false positive. A failure to detect a
watermarked text is called a false negative. The performance of a watermark is measured by its detection
power (i.e., 1�false negative rate) at a given false positive rate.

6



Plotting detectability against
suboptimality as we adjust T
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Figure 2: Comparing the detectability of PF watermark vs Gumbel watermark using Example 4.5. On the
left, we fix the Gap � = 3.0 and vary T . On the right, we fix T = 1.0 and vary �. Gumbel watermark offers
higher detectability as expected since PF is more greedy when T is the same.

Figure 3: Comparing the detectability-greediness tradeoff of PF watermark vs Gumbel watermark in the two
token case. The Gap � = 3.0, both curves are traced out by varying the temperature T – with a “zoomed-in”
view on the RHS.

In conclusion, we showed that the watermarked version of PF-decoder is computationally indistinguishable
from the original version of PF-decoder. Meanwhile, the test score of the PF watermark is qualitatively similar
to that of the Gumbel-watermark (and identical in some cases). It is likely to produce similar detectability to
the Gumbel watermark, while enjoying the performance boost that comes from replacing softmax sampling
with PF.

5 Experiments
In this section, we conduct experiments to evaluate PF decoder’s general performance as well as its watermark
detection ability, watermarked text quality, and watermark robustness against attacks.

Datasets and models. We utilize two long-form text datasets in our experiments: the Colossal Clean
Crawled Corpus (C4) dataset (Raffel et al., 2020) for open-ended text completion generation, and the Alpaca
dataset (Taori et al., 2023) for question-answering tasks. Our primary language model is the state-of-the-art
open-source model Llama-2 with 7 billion parameters. Specifically, we use the Llama-2-7B-chat model for
question-answering tasks on the Alpaca dataset. For text completion tasks on the C4 dataset, we employ the
base model Llama-2-7B. Furthermore, to evaluate the universal applicability of smaller models, we also assess
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PF has more favorable tradeoff curves than Gumbel
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to that of the Gumbel-watermark (and identical in some cases). It is likely to produce similar detectability to
the Gumbel watermark, while enjoying the performance boost that comes from replacing softmax sampling
with PF.

5 Experiments
In this section, we conduct experiments to evaluate PF decoder’s general performance as well as its watermark
detection ability, watermarked text quality, and watermark robustness against attacks.

Datasets and models. We utilize two long-form text datasets in our experiments: the Colossal Clean
Crawled Corpus (C4) dataset (Raffel et al., 2020) for open-ended text completion generation, and the Alpaca
dataset (Taori et al., 2023) for question-answering tasks. Our primary language model is the state-of-the-art
open-source model Llama-2 with 7 billion parameters. Specifically, we use the Llama-2-7B-chat model for
question-answering tasks on the Alpaca dataset. For text completion tasks on the C4 dataset, we employ the
base model Llama-2-7B. Furthermore, to evaluate the universal applicability of smaller models, we also assess
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On real datasets: the PF watermark
provides better Detectability-
Perplexity Tradeoffs
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Figure 4: TestScore distribution. We calculate the average TestScore of the PF watermark and Gumbel
watermark using Llama2-7B (T=1.0) on the C4 dataset. The length of the suspect texts is fixed at 200
tokens. A clear gap emerges between positive samples (watermarked) and negative samples (unwatermarked
and human-written), indicating the watermark detectability.

Figure 5: Trade-off between detection accuracy (TPR at FPR=0.01) and text quality (PPL) across three
watermark configurations on the C4 dataset, with temperature settings ranging from 0.2 to 1.0. Each data
point represents the outcome for 500 watermarked texts. The PF watermark achieves the optimal balance of
the highest detection accuracy and lowest perplexity.

Text generation performance. Table 2 shows the text perplexity of generated samples from different
LLMs evaluated on two datasets. Using the same temperature, we find that PF decoding produces significantly
lower perplexity compared to sampling. Although greedy decoding has the lowest perplexity, it suffers from
heavy repetition, as indicated by its high seq-rep-5 score and low MAUVE score. We observe that for
question-answering tasks, the perplexity is lower, likely due to the fixed form of answers and lower entropy
of the text generation. Table 5 shows an example prompt and responses generated by different decoding
methods.

Watermarking results. We compare the results of our proposed PF watermarking method with those
of the Gumbel Watermark (Gumbel WM) and the Green-Red watermark (KGW WM). In Figure 4, we
present the distribution of detection scores for the PF watermark. The PF watermark demonstrates clear
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Take-home-messages

• Watermarking LLM text is an emerging research
problem that prevents AI abuse.

• We propose Permute-and-Flip decoding and
developed a natural watermarking scheme for it.
• For the same perplexity, it improves detectability and

robustness.

• Interesting connection to the differential privacy
literature --- more interplays in the future.
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Thank you for your attention!

• Permute-And-Flip: An Optimally Robust and Watermarkable 
Decoder for LLMs
Xuandong Zhao, Lei Li, Yu-Xiang Wang.
Technical report, 2024 [arxiv, code]

• Provable Robust Watermarking for AI-Generated Text
Xuandong Zhao, Prabhanjan Ananth, Lei Li, Yu-Xiang Wang.
ICLR 2024 [arxiv, slides, code, demo]
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https://arxiv.org/abs/2402.05864
https://github.com/XuandongZhao/pf-decoding
https://arxiv.org/abs/2306.17439
https://sites.cs.ucsb.edu/~yuxiangw/talks/watermark_talk.pdf
https://github.com/XuandongZhao/GPTWatermark
https://huggingface.co/spaces/Xuandong/Unigram-Watermark


Supplementary slides
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L-robustness implies an intuitive
definition of “diversity”
• If

• Then we can construct &𝑢 such that &𝑢 𝑦 = &𝑢 𝑦%

and &𝑢 − 𝑢 ≤ &
'
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Methods Perplexity Computational Efficiency Diversity Watermark Robustness

Search (e.g., Beam) Lowest 7 7 7 7
Greedy Low 3 7 7 7

Softmax Sampling Moderate 3 3 3 3
Top-p Sampling Low (for small p) 3 Depends on p 3 7
Top-k Sampling Low (for small k) 3 Depends on k 3 7

PF Sampling (ours) Lower than Softmax 3 3 3 3

Table 1: Comparison of different decoding methods against five desiderata.

regularizers such as a lookahead heuristic as in A* decoding (Lu et al., 2021), a retrieval-based term for
fact-checking (Lewis et al., 2020), or an entropy bonus for promoting diversity (Meister et al., 2020).

Our goal is thus to construct a possibly randomized algorithm A that takes ut as an input and outputs yt 2 V
that aims at maximizing Eyt⇠Aut

[ut(yt)] as much as possible. In the remainder of the paper, we will simply
take ut as “logits” for a concrete exposition — all results are valid when ut is instantiated otherwise.

Other constraints / consideration. Why doesn’t the trivial greedy decoder work? That’s because there
are other considerations besides text quality when selecting LLM decoders. For example, computational

efficiency and latency are hugely important, since each API call to the logits function is costly. The
diversity of the generated text is also important, especially for creative tasks.

Moreover, the decoding procedure should be watermarkable (Aaronson, 2023; Kirchenbauer et al., 2023;
Zhao et al., 2023; Kuditipudi et al., 2023) in the sense that one should be able to inject subtle statistical
signals that can be retrieved when given a secret key, to prove that the text is generated by this particular
language model. Being watermarkable prevents the LLM from being used for malicious purposes such as
scams (Weidinger et al., 2021), fake news (Zellers et al., 2019), and plagiarism (Stokel-Walker, 2022).

In addition to the above, one may also hope the decoding algorithm to be robust against small perturba-

tions to the logits. Specifically,

Definition 2.1 (Robustness). We say a decoding algorithm A is L-robust if for any prompt x, prefix y<=t,
and for any perturbed ũ such that kũ� uk1  �, the log-probability ratio satisfies

����log
⇢
pA(ũ(·|x,y<=t))(y)

pA(u(·|x,y<=t))(y)

�����  L� 8y 2 V.

The robustness helps to avoid catastrophic failure in the scenarios where the logits may be subject to data
poisoning (Zhang et al., 2021; Lin et al., 2021) or jailbreaking attacks (Zhang et al., 2023; Zhao et al.,
2024b).

Robustness implies an intuitive notion of diversity, which says that for tokens with similar logits, then their
chances of getting chosen should be similar. More rigorously:

Remark 2.2 (Robustness implies Diversity). If |ut(y) � ut(y0)|  �, then we can construct a ũt such that
ũt(y) = ũt(y0) while satisfying kut � ũtk1  �

2 . Apply triangle inequality and Definition 2.1, we get
�����log

pAut (y)

pAut (y
0)

����� =

�����log
pAut (y)

pAũt (y)
+ log

pAũt (y
0)

pAut (y
0)

�����  L�.

Inspecting the decoding methods along the aforementioned dimensions, we notice that planning-based methods
fail to be computationally efficient. While greedy decoding is efficient and has relatively low perplexity,
its generated texts are neither diverse nor watermarkable (at least not using existing techniques). The
sampling-based methods, however, are both watermarkable and diverse. In addition, softmax sampling is
known to be 2-robust, while all other methods that we discussed so far are not robust.
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Inspecting the decoding methods along the aforementioned dimensions, we notice that planning-based methods
fail to be computationally efficient. While greedy decoding is efficient and has relatively low perplexity,
its generated texts are neither diverse nor watermarkable (at least not using existing techniques). The
sampling-based methods, however, are both watermarkable and diverse. In addition, softmax sampling is
known to be 2-robust, while all other methods that we discussed so far are not robust.
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Let me explain how the Gumbel 
watermark works…
• (Almost) distortion-free, i.e., no quality drop. How?
• Gumbel Softmax Trick!

• NextToken ~ softmax(logits) 
• NextToken = argmax logits + Gumbel noise

• Watermarking phase
• “ITA is my favorite conference. It always ___”

• Detection phase
• We know the prefix and the random seeds..
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What are needed for a good
watermark for LLM generated text?
• Quality of generated text

• Detection guarantees
• Type I error: “No false positives”
• Type II error: “Only true positives”

• Security property
• Resilient to all kinds of evasion attacks (e.g., edits, 

paraphrasing)

• Other required properties
• Efficiency, Model-agnostic detection. 
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