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ChatGPT and other Large
Language Models

Llama Alpaca, Vicuna
RedPajama
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LLMs are very useful…
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Could you generate HW2 for my machine learning class please?
Make it difficult so it appears to be not AI-generated…

Certainly! Here is a difficult machine learning homework

The prof is crazy! HW2 is so difficult.
Could you write the solution for HW2 for me?

Problem 1 Solution: XXXXXXXXXX….



LLM can be used for malicious purposes,
e.g., fake news, frauds, scams…

4What do we do?



Possible solution: Can you distinguish 
between human and AI-generated text?
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The Information Theory and Applications (ITA) 
Workshop is a captivating and vibrant 
gathering that brings together some of the 
brightest minds in the world of information 
theory. This dynamic workshop serves as a 
melting pot for pioneering ideas, where 
experts and enthusiasts from various 
disciplines converge to explore the latest 
advancements in information theory and its 
myriad applications. From groundbreaking 
research presentations to thought-provoking 
discussions, ITA is not just a conference; it's a 
celebration of knowledge and innovation. 

Human ?

Machine ?

Train a machine learning model to solve Turing test?



Training classifiers to detect AI-
generated text is bound to fail!
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Liang et al. 2023: https://arxiv.org/abs/2304.02819

https://arxiv.org/abs/2304.02819


Better solution: “watermark” the
generated text…
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Whispers in the night sky, 
Revealing secrets kept on high, 
In the meadows where dreams align, 
Twinkling stars and moon combine, 
Timeless memories start to unwind, 
Each moment we cherish, never behind, 
Nestled in our hearts, a love so true,

Behold the beauty in every hue, 
Yearning for a connection that's pure,

Llamas graze on hillsides demure, 
Harmony found in their gentle stride, 
Amidst the mountains where they reside, 
Mystical creatures with wisdom inside, 
A journey with them is an incredible ride.

Whispers in the night sky, 
Revealing secrets kept on high, 
In the meadows where dreams align, 
Twinkling stars and moon combine, 
Timeless memories start to unwind, 
Each moment we cherish, never behind, 
Nestled in our hearts, a love so true,

Behold the beauty in every hue, 
Yearning for a connection that's pure,

Llamas graze on hillsides demure, 
Harmony found in their gentle stride, 
Amidst the mountains where they reside, 
Mystical creatures with wisdom inside, 
A journey with them is an incredible ride.



Watermarking has a
long history.
• Ancient Greece: Steganography
• 1499: Trithemius “Steganographia”

• Modern research:
• 1950s: Embedding code to music

(Hembrooke, 1954)
• 1990s to 2000s: Digital Watermarks (e.g.,

Ingemar J. Cox, Matt Miller, etc..)

8

Mostly about “IP protection”, “Authentication”
Mostly about images. Some interesting theoretical results.

(Herodotus, 499 BC )

(Trithemius, 1499)



2022+: Recent Renaissance due to
the rise of Generative AI
• Watermarking LLM text

• Aaronson (2022), Kirchenbauer et al (2023), Zhao et al. (2023;2024),
Christ et al (2023), Kuditipudi et al. (2023)

• Watermarking LLM models
• Zhao et al (2022) “Distillation resistant watermarking” Zhao et al (2023)
“Protecting Language Generation Models via Invisible Watermarking”

• Watermarking Images (e.g. from Diffusion models)
• (e.g., Fernandez et al 2023 “Stable signature”, Wen et al. 2023 "Tree-

Ring Watermarks“)
• “Is strong watermarking possible?”

• "Zhao et al (2023) “Invisible Image Watermarks Are Provably Removable 
Using Generative AI”

• Zhang, Barak et al. (2024) Watermarks in the Sand: Impossibility of Strong 
Watermarking for Generative Models

• Also work by Soheil Feizi et al.

9
Slightly different settings, motivating applications and new challenges.



LLM text watermarking schemes

• Statistical watermarks
• Green-Red watermark (Kirchenbauer et al., 2023)
• Unigram (Green-Red) WM ( Zhao, Ananth, Li, W., 2023)

• Cryptographic watermarks
• Gumbel watermark (Aaronson, 2022)
• Undetectable WM (Christ, Gunn, Zamir 2023)
• Permute-and-Flip WM (Zhao, Li, W., 2024)

• Quite a few others in this fast-growing research area
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Outline of the talk

• Formally defining LLM watermarks

• Two recent work
• Provable Robust Watermark of LLMs
• Permute-and-Flip decoding and watermarking

• Open problems
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What is a Language Model?
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“Hold my ____

P(next word !! | Prompt ", previous words !":!$")
beer： 0.5

gun： 0.3

blood-pressure：
0.001

You were having a great time at
a bar. Suddenly, she showed up.
You said to your pal: .

.

.

The universe of words is called a vocabulary !

hand： 0.1



An LM Watermarking Scheme has
two components
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Watermark(ℳ): (possibly randomized procedure)
that outputs a new model ℳ̂, and detection key #

Detect(#, %): takes input detection key # and 
sequence %, then outputs 1 (indicating it was AI-
generated) or 0 (indicating it was human-generated)



Example: Green-Red Watermark
(Kirchenbauer et al. 2023; Zhao et al. 2023)
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“Hold my ____

beer： 0.5

gun： 0.3

blood-pressure：
0.001

You were having a great time at
a bar. Suddenly, she showed up.
You said to your pal: .

.

.

hand： 0.1

beer： 0.52

gun： 0.29

blood-pressure：
0.001

hand： 0.11

Increase the probability of green tokens slightly,
Decrease the probability of red tokens slightly.

ℳ̂: Modified LM
Key: Green lists
Detection: Count # of Greens



Example of the watermark detector

Prompt & Q: what is codependent and why is it bad? 
A: To define codependency as it relates to mental health, 
one has to understand what it means to be emotionally 
dependent. While a person can be dependent on another 
person for fulfillment, as evidenced through feelings of 
low self-esteem and fear of loss, a codependent person 
will often keep another person in their life despite their 
poor and sometimes abusive behavior.  [continues...]

*Confidence score 0.99999999999… 
( p-value < 10e-15)

15



What are needed for a good
watermark for LLM generated text?
• Quality of generated text

• Detection guarantees
• Type I error: “No false positives”
• Type II error: “Only true positives”

• Robustness
• Must be robust to all kinds of evasion attacks

16



Quality of LLM generated text

• Low-distortion: distributions of the generated text by
ℳ and "ℳ are close
• Which metric to use? TV, KL-div, Renyi?

• Which distribution? One-token / whole sequence / any
polynomial number of sequences

• (ex post vs ex ante) when !ℳ is random, is the quality
guarantee for every realized !ℳ or over the distribution of !ℳ

• High quality: The generated text by "ℳ should be high
• E.g., perplexity and other metrics.
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Provable theoretical results on
quality of the WM

Single token Whole
sequence

Many
sequences

ex ante Aaronson Kuditipudi et al Christ et al

ex post Zhao et al
Zhao et al
(through

composition)
?

18



A hypothesis testing view of LLM
watermarks’ detection properties
• H0: The suspect text y is NOT generated from &ℳ
• e.g., “y” is written by a human.
• e.g., “y” is generated by ℳ.

• H1: The suspect text is generated from &ℳ

• Metrics：Type I / II Err. Power at FPR '. F1-score.
• Theory：Can we control FPR. Can we prove high

power? Are the tradeoff optimal?

19

A very broad “Null” and a very specific “Alternative ”



Not all LLM generated text are
easily watermarkable.
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Write a blog article with my rant the broken peer-review system!

Don’t get me started with Reviewer #2. I’d rather have GPT4
reviewing my paper ….

Repeat “Goal!” for 500 times like a football commentator

Goal! Goal! Goal! Goal! …

Which example is more easily watermarkable / detectable?



Robustness is needed even if no
explicit evasion attack. People won’t 
use the generated text verbatim! 
• Cropping 
• Shuffling: Move thing around
• Edits / improving

21



Formally defining robustness

• Need to specify a family of possible attacks
• e.g. parameterized by the Edit Distance allowed

• Quantify how much drop in “Power” or increase in
Type II error
• E.g., as a function of the Edit distance.
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Don’t get me started with Reviewer #2. I’d rather have GPT4
reviewing my paper ….

Hmmm.. Let me edit it before posting the blog.



Outline of the talk

• Formally defining LLM watermarks

• Two recent work
• Provable Robust Watermark of LLMs
• Permute-and-Flip decoding and watermarking

• Open problems
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TL;DR of our contributions in
[Zhao, Ananth, Li, W. 2023]
1. Theoretical framework for LLM Watermarks

2. Theoretical guarantees of Kirchenbauer et al’s
Green-Red watermark
• Quality, Detection accuracy, Robustness

3. Simplest (Unigram) variant of the green/red WM
has the most robustness --- and it works!

24

Provable Robust Watermarking for AI-Generated Text
Xuandong Zhao, Prabhanjan Ananth, Lei Li, Yu-Xiang Wang.
ICLR 2024 https://arxiv.org/abs/2306.17439

https://arxiv.org/abs/2306.17439


Green-Red Watermark, revisited
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“Hold my ____

beer： 0.5

gun： 0.3

blood-pressure：
0.001

You were having a great time at
a bar. Suddenly, she showed up.
You said to your pal: .

.

.

hand： 0.1

beer： 0.52

gun： 0.29

blood-pressure：
0.001

hand： 0.11

Increase the probability of green tokens slightly,
Decrease the probability of red tokens slightly.

ℳ: $! ∼ Soamax( logits(Prompt, $"!))

&ℳ: $! ∼ Soamax( logits(Prompt, $"!) + δ ⋅ ) ⋅ *+ ,-../ )



How is the Green list generated?

• Randomly selecting ( fraction of the vocabulary.

• (Kirchenbauer et al.): Different green list at each time t
as function of the prefix with length (m-1).

• (Zhao et al.): Use m = 1, i.e., a consistent “Green list”.
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You were having a great time at a bar. Suddenly, she
showed up. You said to your pal: __

m-Gram with m = 4



Detection of Green/Red WM

Input: Suspect text % = [+!, … , +"]

1. Computer z-score

2.

else:
Return 1: “0	is watermarked”

Return 0: “No conclusive evidence”

27

(Optional pre-processing) 0ß unique(0)



Theoretical Guarantee for
Unigram-Green/Red Watermarks
• Quality guarantees:
• Watermarked LLM and Original LLM are

indistinguishable.

• Detection guarantees
• Type I error --> 0 exponentially as n gets larger.
• Type II error --> 0 exponentially as n gets larger (under

natural technical conditions)

• Provably Robust to Edits --- Twice as robust as an
popular baseline (Kirchenbauer et al. 2023)
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Quality guarantees

Theorem: Any prompt, any prefix text. Any Renyi-
Divergence .# /|| /̂ ≤ min{7, #$

!

% }

Original LM Watermarked
LM

!-Indistinguishable (pure Differential Privacy)
29



After adding watermark, the
performance of the LLM remains strong!
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Detection guarantees
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Theorem: Let the suspect text % be independent to
the secret key (i.e., the green list).

where 9 and :&'( measure the diversity of the text.
If unique, then Z=1 and Cmax = 1

Theorem (informal): Let the suspect text % be
generated using our watermarked LM. Assume n is
sufficiently large, original LM satisfy a “Entropy
condition” and “Homophily”, then

#! = %( '() */, ) w.p. * − ,

#! = / 0 (1" − *) 2 3. 5. * − 6

; = <Ω(log(1/D)/7))



Our detection guarantees Illustrated
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#! ≲ O(log(1/,))

#! ≳ (/" − 1) 1

H0: “Null”H1: Alternative



Our watermark is robust to edits!
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Theorem: Adversary take watermarked output %,  
Adversary edits to get to a new text F. If Edit 
Distance G. +, H ≤ I, then

Adversary can have any side information, 
can even know the Green List.



Comparing to the watermark
from [KGW+23]
• Very similar to ours but 

Green-list depends on the 
prefix token.
• Ours is provably 2x as 

robust to edits.
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Why “Unigram” watermark --- among
the family of “m-gram” watermarks?
• [KGW+23] focused on m=2.
• [Aaronson22] can also be viewed as a m-gram

cryptographic watermark. Scott says that m = 9 is a
good choice.

• We find it most practical to use m=1.
• Robustness to edits: margin / m

35



Experiment

• Two long-form text datasets
• OpenGen: 3K chunks sampled from the validation split 

of WikiText-103
• LFQA: long-form question-answering dataset from

Reddit

• Three state-of-the-art public language models
• GPT2-XL: 1.5B parameters [Radford et al., 2019]
• OPT-1.3B [Zhang et al., 2022]
• LLaMA-7B [Touvron et al., 2023]
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Paraphrasing attack
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Watermarked LLM

“Generated 
Text with 
watermark”

Prompt: “Please paraphrase!”

“New text 
generated with 
similar quality”



Robustness against paraphrasing
attack

38



Outline of the talk

• Formally defining LLM watermarks

• Two recent work
• Provable Robust Watermark of LLMs
• Permute-and-Flip decoding and watermarking

• Open problems
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All existing watermarks work with 
the standard decoder: softmax(logits) 

• Temperature parameter T:
• Large T ó higher text entropy (more watermarkable)
• Small T ó higher text quality (smaller perplexity).

40

1. Is softmax(logits) the optimal choice?

2. Can we benefit from co-designing the decoder and 
watermarking scheme?

1 Introduction
Large language models (LLMs) (OpenAI, 2022, 2023b; Bai et al., 2022; Touvron et al., 2023) have become
increasingly popular in recent years due to their ability to generate human-like text and solve many tasks
through a natural chatbot interface.

A language model predicts the next word in a sentence using a real-value function u(·; prompt, prefix) : V ! R,
known as logits, which encodes the model’s preferences on which word to choose. Here V is the vocabulary
space (typically a large discrete set of words); the “prompt” describes the task of interest; and “prefix” includes
all preceding words that have been generated so far.

A language model decoder refers to a possibly randomized function that takes a prompt text x, API access to
the logits function as input, and outputs a sentence y1:n.

The main thrust of this paper is to introduce a new decoder, termed Permute-and-Flip decoding, work
out some of its intriguing properties with an application to watermarking LLM text, and hopefully convince
readers that it deserves a shot at your next LLM application.

2 Problem Setup and Summary of Results
Before we get into it, let us set up the stage with a quick tour to the zoo of existing decoding methods and
have a brief sneak-peek into the “jar of worms” on how a language model decoder can be evaluated.

Popular existing decoding methods fall into three categories: (1) Planning-based methods such as beam
search that aims at maximizing the sequence likelihood; (2) sampling-based methods that recursively sample
from the next-word distribution, e.g., the soft(arg)max transform of the logits

Softmax sampling: yt ⇠ p(y) =
eu(y|x,y1:t�1)/T

P
ỹ e

u(ỹ|x,y1:t�1)/T
(1)

where T is the temperature parameter; and (3) greedy methods such as greedy decoding that simply outputs
yt = argmax

y2V u(y|x, y1:t�1) as well as its Top p (Holtzman et al., 2019) and Top k sampling variants that
interpolate greedy and sampling methods.

Performance metrics. How do we compare different decoding methods? More generally, how do we
evaluate LLM-generated text? These are questions far from being settled. Naturally, if there is a (possibly
task-dependent) performance metric Ux : Vn ! R one can define, then the optimal decoder would be the one
that outputs

y
⇤
1:n = argmax

y1:n2Vn
Ux(y1:n).

Often Ux is instantiated to be the sequence likelihood
P

n

t=1 log p(yt|x, y1:t�1) which is equal to
P

n

t=1 ut(yt).

Recent works (Ippolito et al., 2019; Wiher et al., 2022), however, report that strategies that aim at maximizing
sequence likelihood often result in texts that are more repetitive and less effective in some downstream tasks
than those from the sampling-based methods (Holtzman et al., 2019). Depending on what the task is, there
is not a one-size-fits-all performance metric, therefore is no single decoding method that works well for all
tasks.

For the moment, let us stash the disputes on how to best evaluate an LLM-generated text and focus
on designing methods that maximize any user-specified utility function. In fact, we will also give up on
solving the sequence-level utility maximization problem1 and simply maximize a per-step utility function
ut : V ! R.

ut can simply be the logits function that LLMs output, which may have already accounted for potential
future utility (like the Q function in reinforcement learning) since the transformer-based language model
had access to future texts during pre-training. Or ut can be explicitly augmented with structure-inducing

1It is known to be NP-Complete (Chen et al., 2017).
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TL;DR of our results in [Zhao, Li, W.
2024]
1. We propose “Permute-and-Flip Decoding”
• PF dominates Softmax in robustness-perplexity tradeoff.

2. A cryptographic watermark for Permute-and-Flip
• Enjoys all nice properties of the Gumbel watermark
• Slightly better detectability-perplexity tradeoff

41

Permute-And-Flip: An Optimally Robust and Watermarkable Decoder for LLMs
Xuandong Zhao, Lei Li, Yu-Xiang Wang.
Technical report： https://arxiv.org/abs/2402.05864

https://arxiv.org/abs/2402.05864


Permute-and-Flip Sampling from 
Differential Privacy literature
(McKenna and Sheldon, 2021)

42

Permute

Flip



Permute-and-Flip(logits) is very
similar to Softmax(logits)
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Permute-and-Flip does nothing but replacing Step 1 by
sampling without replacement.

Rejection sampling form of Softmax sampling



The advantage of PF Sampling is that
it gets all the nice properties of the
softmax but improves the perplexity.

44



Robustness against adversarial
perturbation to the logits
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LLM
logits 2

for
NextToken

logits 32
for

NextToken

J H =:L

J MH =: NL

Definition: L-robustness.
J is L-robust if log *+

* ,+ ≤ O 7

Adversarial Perturbation

| 5 − 75| 2 ≤ 9



Both Softmax and P&F are provably
robust, but P&F is up to 2x better 
than Softmax at “optimization”
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Theorem (McKenna and Sheldon, 2021):
1. Permute-and-Flip sampling is 1/T-robust.
2. For the same T,  PF dominates Softmax in terms of

expected suboptimality.
3. PF is Pareto-optimal in robust-suboptimality tradeoff.

Theorem (McSherry and Talwar, 2007):
Softmax sampling is 1/T-robust.



PF decoder dominates softmax
decoder for all parameter choices

47

Example: Two token vocabulary, logits H = [0, Δ].
Suboptimality: H∗ − S H



PF improves perplexity on open-
domain generation datasets
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TL;DR of our results

1. We propose “Permute-and-Flip Decoding”
• PF dominates Softmax in robustness-perplexity tradeoff.

2. A cryptographic watermark for Permute-and-Flip
• Enjoys all nice properties of the Gumbel watermark
• Slightly better detectability-perplexity tradeoff

49



From Gumbel-Softmax trick to
Exponential-PF trick
• Gumbel-Softmax trick (Gumbel, 1948)

• Exponential-PF trick (Ding et. al, 2021)

50

<latexit sha1_base64="gb0T19TQrHYN92pQW9ImBd5AnYI=">AAACIHicbVBNS8NAFNz4WetX1KOXxSK0l5KIWo9FLx4rWhWaEjbbTbu4m4TdFzGE/BQv/hUvHhTRm/4atzUHtQ4sDDPv8XYmSATX4Dgf1szs3PzCYmWpuryyurZub2xe6jhVlHVpLGJ1HRDNBI9YFzgIdp0oRmQg2FVwczL2r26Z0jyOLiBLWF+SYcRDTgkYybdbmQ/Y01xi7EkCIyXz8zgESe4KT7AQ6l6oCM1TH+pZo8gvCk/x4Qgavl1zms4EeJq4JamhEh3ffvcGMU0li4AKonXPdRLo50QBp4IVVS/VLCH0hgxZz9CISKb7+SRggXeNMsBhrMyLAE/Unxs5kVpnMjCT4xD6rzcW//N6KYRH/ZxHSQosot+HwlRgiPG4LTzgilEQmSGEKm7+iumImEbAdFo1Jbh/I0+Ty72me9g8ONuvtY/LOipoG+2gOnJRC7XRKeqgLqLoHj2iZ/RiPVhP1qv19j06Y5U7W+gXrM8v2gekCw==</latexit>

yt ⇠ Softmax

✓
ut(y)

T

◆
<latexit sha1_base64="K3hhthJmabLxiBbxK74ro8kGBMw=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKu+DoGvXjwEME8IFnC7GQ2GTI7s8z0KnHJl3jxoIhXP8Wbf+Mk2YNGCxqKqm66u8JEcAOe9+UUlpZXVteK66WNza3tsruz2zQq1ZQ1qBJKt0NimOCSNYCDYO1EMxKHgrXC0dXUb90zbbiSdzBOWBCTgeQRpwSs1HPL3RsWgeaDIRCt1UPPrXhVbwb8l/g5qaAc9Z772e0rmsZMAhXEmI7vJRBkRAOngk1K3dSwhNARGbCOpZLEzATZ7PAJPrRKH0dK25KAZ+rPiYzExozj0HbGBIZm0ZuK/3mdFKKLIOMySYFJOl8UpQKDwtMUcJ9rRkGMLSFUc3srpkOiCQWbVcmG4C++/Jc0j6v+WfX09qRSu8zjKKJ9dICOkI/OUQ1dozpqIIpS9IRe0Kvz6Dw7b877vLXg5DN76Becj287dpN7</latexit>,

<latexit sha1_base64="K3hhthJmabLxiBbxK74ro8kGBMw=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKu+DoGvXjwEME8IFnC7GQ2GTI7s8z0KnHJl3jxoIhXP8Wbf+Mk2YNGCxqKqm66u8JEcAOe9+UUlpZXVteK66WNza3tsruz2zQq1ZQ1qBJKt0NimOCSNYCDYO1EMxKHgrXC0dXUb90zbbiSdzBOWBCTgeQRpwSs1HPL3RsWgeaDIRCt1UPPrXhVbwb8l/g5qaAc9Z772e0rmsZMAhXEmI7vJRBkRAOngk1K3dSwhNARGbCOpZLEzATZ7PAJPrRKH0dK25KAZ+rPiYzExozj0HbGBIZm0ZuK/3mdFKKLIOMySYFJOl8UpQKDwtMUcJ9rRkGMLSFUc3srpkOiCQWbVcmG4C++/Jc0j6v+WfX09qRSu8zjKKJ9dICOkI/OUQ1dozpqIIpS9IRe0Kvz6Dw7b877vLXg5DN76Becj287dpN7</latexit>,
<latexit sha1_base64="v1IOa7vdIhab094SWbKvYc30byM="></latexit>

yt ⇠ Permute&Flip

✓
ut(y)

T

◆

ReportNoisyMax from Differential Privacy.



Idea to watermark PF-Decoding

51

• Gumbel-Watermark (Aaronson, 2022)

• PF-Watermark (Ours) Make them
pseudo-
random!



Detection score for PF-watermark

52

Algorithm 2 PF watermarking: Watermark

1: Preparation: Randomly sample a watermark key k.
2: Input: Prompt x, language model M, pseudo-random function F , watermark key k, temperature T

3: for t = 1, 2, · · · do

4: Compute logits: ut  M([x, y1:t�1])
5: Generate a pseudo-random vector rt(·) using rt(y) := Fyt�m:t�1,k(y) for y 2 V.
6: Select the next token yt using

yt = argmax
y2V

✓
ut(y)

T
� log rt(y)

◆
. (6)

7: end for

8: Output: Watermarked sequence y = [y1, ..., yn]

Algorithm 3 PF watermarking: Detect

1: Input: Suspect text y1:n, watermark key k, pseudo-random function F , target false positive rate ↵

2: Output: Binary decision (1 if text is watermarked, 0 otherwise)
3: Calculate the cumulative score

TestScorePF(y1:n) =
nX

t=m+1

� log(rt(yt)) (7)

where rt(y) = Fyt�m:t�1,k(y)
4: if TestScore > CDF�1

Gamma(n�m,1)(1� ↵) then return 1, i.e., “The suspect text is watermarked.”
5: else return 0, i.e., “The suspect text is not watermarked.”

Permute-and-Flip as ReportNoisyMax. It turns out that the Permute-and-Flip sampling has a similar
equivalent Report-Noisy-Max form. Instead of Gumbel noise, it is the exponential noise that are added to
the logits. This less-known fact is due to Ding et al. (2021)

Fact 4.2 (Ding et al., 2021, Theorem 5). Permute-and-Flip Sampling in Algorithm 1 with parameter T is
equivalent to

yt = argmax
y2V

ut(y)

T
+ Et(y). (5)

where Et(y) ⇠ Exponential(1) i.i.d. for each t, y.

Leveraging this fact, in the remainder of the section, we develop a watermarking scheme for ReportNoisyMax
that is analogous to the Gumbel-watermark.

Permute-and-Flip watermark. The natural idea is to replace the exponential noise Et(y) with a pseudo-
random version that depends on a secret key and a prefix with length m. Observe that Exponential(1) ⇠
� log(Uniform([0, 1])), thus the standard pseudo-random function that generates uniform random variables
can be used. In the detection phase, we compute:

TestScorePF(y1:n) =
nX

t=m+1

� log(rt(yt)).

Note that this is a simple change of sign of rt(yt) comparing to the test score of the Gumbel watermark.
Detailed pseudo-code for how the watermark works are given in Algorithm 2 and Algorithm 3.

Theorem 4.3. Assume the pseudo-randomness is perfect2, i.e., Fw1:m,k(y) ⇠ Unif([0, 1]) i.i.d. 8[w1:m, y] 2
Vm+1.

2This is a simplifying assumption. We only need (n�m)|V|-way independence.
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Figure 4: TestScore distribution. We calculate the average TestScore of the PF watermark and Gumbel
watermark using Llama2-7B (T=1.0) on the C4 dataset. The length of the suspect texts is fixed at 200
tokens. A clear gap emerges between positive samples (watermarked) and negative samples (unwatermarked
and human-written), indicating the watermark detectability.

Figure 5: Trade-off between detection accuracy (TPR at FPR=0.01) and text quality (PPL) across three
watermark configurations on the C4 dataset, with temperature settings ranging from 0.2 to 1.0. Each data
point represents the outcome for 500 watermarked texts. The PF watermark achieves the optimal balance of
the highest detection accuracy and lowest perplexity.

Text generation performance. Table 2 shows the text perplexity of generated samples from different
LLMs evaluated on two datasets. Using the same temperature, we find that PF decoding produces significantly
lower perplexity compared to sampling. Although greedy decoding has the lowest perplexity, it suffers from
heavy repetition, as indicated by its high seq-rep-5 score and low MAUVE score. We observe that for
question-answering tasks, the perplexity is lower, likely due to the fixed form of answers and lower entropy
of the text generation. Table 5 shows an example prompt and responses generated by different decoding
methods.

Watermarking results. We compare the results of our proposed PF watermarking method with those
of the Gumbel Watermark (Gumbel WM) and the Green-Red watermark (KGW WM). In Figure 4, we
present the distribution of detection scores for the PF watermark. The PF watermark demonstrates clear
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Guarantees of PF-watermark are
analogous to those of the Gumbel
• Distortion-free (ex ante)
• Computationally indistinguishable from PF-decoding.

• Precise FPR control
• TestScore/n à 1 under the null hypothesis.
• Under the null hypothesis, the test-score follows a

Gamma distribution.

• High power if generated text has high-entropy
• TestScore/n à : for :>>1 under the alternate

hypothesis
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The amount of signal adapts to
the entropy
• High entropy: Perfectly Random
• E[TestScore_PF] = E[TestScore_Gumbel] = 1 + 1/2 + 1/3

+ … + 1/|V|.

• No entropy:
• E[TestScore_PF] = E[TestScore_Gumbel] = 1

• In between: roughly proportional to entropy

54



How does PF-watermark compare 
to Gumbel watermark?
• Example: Two token vocabulary, logits H = [0, Δ].
• Detectability: S[Score|WM] -S[Score|No WM]
• Suboptimality: H∗ − S H
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Plotting detectability against
suboptimality as we adjust T

56PF has more favorable tradeoff curves than Gumbel



On real datasets: the PF watermark
provides better Detectability-
Perplexity Tradeoffs
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Figure 4: TestScore distribution. We calculate the average TestScore of the PF watermark and Gumbel
watermark using Llama2-7B (T=1.0) on the C4 dataset. The length of the suspect texts is fixed at 200
tokens. A clear gap emerges between positive samples (watermarked) and negative samples (unwatermarked
and human-written), indicating the watermark detectability.

Figure 5: Trade-off between detection accuracy (TPR at FPR=0.01) and text quality (PPL) across three
watermark configurations on the C4 dataset, with temperature settings ranging from 0.2 to 1.0. Each data
point represents the outcome for 500 watermarked texts. The PF watermark achieves the optimal balance of
the highest detection accuracy and lowest perplexity.

Text generation performance. Table 2 shows the text perplexity of generated samples from different
LLMs evaluated on two datasets. Using the same temperature, we find that PF decoding produces significantly
lower perplexity compared to sampling. Although greedy decoding has the lowest perplexity, it suffers from
heavy repetition, as indicated by its high seq-rep-5 score and low MAUVE score. We observe that for
question-answering tasks, the perplexity is lower, likely due to the fixed form of answers and lower entropy
of the text generation. Table 5 shows an example prompt and responses generated by different decoding
methods.

Watermarking results. We compare the results of our proposed PF watermarking method with those
of the Gumbel Watermark (Gumbel WM) and the Green-Red watermark (KGW WM). In Figure 4, we
present the distribution of detection scores for the PF watermark. The PF watermark demonstrates clear
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Checkpoint

• We propose Permute-and-Flip decoding and
developed a natural watermarking scheme for it.
• For the same perplexity, it improves detectability and

robustness.

• Interesting connection to the differential privacy
literature --- more interplays in the future.
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Outline of the talk

• Formally defining LLM watermarks

• Two recent work
• Provable Robust Watermark of LLMs
• Permute-and-Flip decoding and watermarking

• Open problems
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Optimal tradeoffs in LLM watermarks
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Enhancing robustness

• Optimality in the Edit model. Is Unigram WM the
optimal?
• More realistic threat models
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Bob generated a section
using ChatKitten
Alice generated a paragraph
using ChatPuppy

Dave wrote the
remaining by himself.

Can watermarking help to
catch the following?
Detection with 99% confidence.

Line 57-86 used ChatKitten
outputs, related to user 75801

(nickname: Bob).

Detection with 90% confidence.
Paragraph 35 used ChatPuppy
outputs, related to User 14234

(nickname: Alice)
Eric gave it an editing pass.

Term Project Report



More co-design of decoder and
watermarks?
• Provable Watermarking for Beam search?
• Or other methods that aim at solving the sequence level

MLE decoding.

• When can we still watermark without entropy?
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How do we watermark open-
source LLMs?
• Model watermarks that are resilient to finetuning
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Finetune

Watermark

Watermark

Watermark

WatermarkWatermark
Watermark Input

Finetuned
from

LlaMA 7BOutput

probe
dataset



Thank you for your attention!

• Permute-And-Flip: An Optimally Robust and Watermarkable 
Decoder for LLMs
Xuandong Zhao, Lei Li, Yu-Xiang Wang.
Technical report, 2024 [arxiv, code]

• Provable Robust Watermarking for AI-Generated Text
Xuandong Zhao, Prabhanjan Ananth, Lei Li, Yu-Xiang Wang.
ICLR 2024 [arxiv, slides, code, demo]
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Xuandong Zhao Lei Li Prabhanjan Ananth

https://arxiv.org/abs/2402.05864
https://github.com/XuandongZhao/pf-decoding
https://arxiv.org/abs/2306.17439
https://sites.cs.ucsb.edu/~yuxiangw/talks/watermark_talk.pdf
https://github.com/XuandongZhao/GPTWatermark
https://huggingface.co/spaces/Xuandong/Unigram-Watermark

