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ABSTRACT

We introduce a manifold analysis technique for quantifying the discrepancy be-
tween two representation spaces. Normalized Space Alignment (NSA) aims to
compare pairwise distances between two point clouds. Our technique provides
a robust means of comparing representations across different layers and models,
with a particular focus on Graph Neural Networks (GNNs) to explore their unique
capabilities. We show that our technique acts as a pseudometric, satisfies the
properties of a similarity metric, and is continuous and differentiable. We also
demonstrate that NSA can serve as an effective loss function by utilizing it in au-
toencoders to preserve representation structure for dimensionality reduction. Fur-
thermore, our empirical analysis showcases that NSA consistently outperforms
or matches the results of previous techniques while offering computational effi-
ciency. Its versatility extends to robustness analysis and various neural network
training and representation learning applications, highlighting its wide applicabil-
ity and potential to enhance the performance of neural networks.

1 INTRODUCTION

Graph data arises in a number of application domains ranging from social sciences, infrastructure,
neuroscience, and biology. Compared to unstructured data, graph analysis is more challenging due
to interdependence among entities and poses challenges to the application of conventional machine
learning methods that often rely on vector-based data representations. Graph Neural Networks
(GNNs) are powerful tools for modeling and predicting networked data behavior (Kipf & Welling,
2017; Veličković et al., 2018). They incorporate propagation modules for aggregating neighbor-
based feature and topology information and pooling modules for abstract representation creation.

GNNs have been applied for node-level tasks (node classification, node regression, node clustering,
etc.), edge-level tasks (edge classification, link prediction, flow prediction, etc.) and graph-level
tasks (graph classification, graph regression, graph explanation, etc.) (Zhou et al., 2020; Wu et al.,
2019; Zhang et al., 2022; Ranjan et al., 2022; da Silva et al., 2021; Huang et al., 2023). Such methods
represent graph elements in a latent space and solve the downstream task using such representations.

Graph representations need to be meaningful for the task at hand; representations and distances
between them can provide insights into representation specifics for a task, whether representations
can be transferred from one task to another, and whether representations are robust (Finn et al.,
2017). But how to compare the similarity of representations is an unsolved problem. Early pro-
posed measures were based on variants of “Canonical Correlation Analysis (CCA)” (Morcos et al.,
2018; Raghu et al., 2017), and “Centered Kernel Alignment (CKA)” (Kornblith et al., 2019). Re-
cently Barannikov et al. (2022) proposed methods for comparing two data representations using
“Representation Topology Divergence (RTD)” that measures the dissimilarity in multi-scale topol-
ogy between two point clouds of equal size with a one-to-one correspondence between points.

There exists a compelling need for a novel approach that bridges the gap between two distinct yet
essential attributes: computational complexity and differentiability. While CKA offer an efficient
means of assessing similarity, it has been proven to be lacking on several fronts (Davari et al., 2023;
Williams et al., 2021; Ding et al., 2021). On the other hand, metrics like RTD provide differentiabil-
ity but at the expense of computational complexity, making them impractical for large-scale datasets.
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Addressing this need for a similarity metric that marries the computational efficiency of CKA with
the differentiability of RTD is crucical. Such a metric not only empowers practitioners to navigate
high-dimensional spaces with ease but also facilitates the seamless integration of similarity-based
techniques into gradient-based optimization pipelines, thereby unlocking new frontiers in machine
learning and data analysis.

We present a distance preserving similarity metric called “Normalized Space Alignment (NSA).”
NSA measures the work done to align all the points in one point cloud P to another point cloud Q
when both point clouds are normalized to lie in an unit space. Both point clouds can lie in different
ambient spaces as long as there is a one to one mapping between the data points. The work done is
measured as the difference between the normalized distance of a point to all other points in the two
representations. When computed for all the points in the point cloud, the mean of the absolute work
done defines the NSA between P and Q.

Though our ideas are broadly applicable to neural networks and all kinds of data, we target most of
our presentation and experiments to graphs because they are unstructured and as a result, the pose the
biggest challenge in creating meaningful representations. In other applications, we show how NSA
serves as a structure-preserving loss function when employed in general neural networks. It can
be used for dimensionality reduction with autoencoders (Trofimov et al., 2023; Moor et al., 2020;
Rudolph et al., 2019), robustness analysis (Jin et al., 2020b; Zhang & Zitnik, 2020), and facilitating
backward compatibility neural networks with evolving data.

In summary, we make the following contributions:

• NSA is proposed and established as pseudometric and a similarity index. NSA’s quadratic
computational complexity (in the number of points) is much better than some of the existing
measures (e.g., cubic in the number of simplices for RTD). NSA has a strong performance
on the similarity index sanity test (Kornblith et al., 2019), has a good correlation to test
accuracy during training, and can accurately predict the convergence of representations
across layers (Section 3).

• NSA can act as a loss function for neural networks due to its continuity and differentiability
properties. NSA’s ability to act as a structure preserving loss for dimensionality reduction
with autoencoders is presented (Section 4). The autoencoder supported by NSA loss out-
performs previous works like TopoAE (Moor et al., 2020) and RTD-AE (Trofimov et al.,
2023) on several real world datasets.

• NSA can capture structural discrepancies that result from adversarial attacks (Section 5).
NSA’s performance on global poisoning and evasion attacks on several GNN architectures
is evaluated. NSA shows a high correlation with misclassification rate across different
degrees of perturbation. Furthermore, it can also rank different architectures. Simple tests
with NSA can provide insights on par with other works that review and investigate the
robustness of GNNs (Mujkanovic et al., 2022; Jin et al., 2020a).

• It is observed that training different GNN architectures for a shared downstream task results
in comparable representation spaces. Conversely, when these architectures are trained on
the same dataset but for different downstream tasks, the resulting representation spaces are
dissimilar (Section 6). This suggests that focusing on aligning the data’s representation
space with a task-specific template, rather than optimizing on downstream task accuracy,
can yield significant benefits in performance and explanations.

2 RELATED WORK

Centered Kernel Alignment (CKA): CKA, a widely-used similarity metric, is based on Represen-
tational Similarity Matrix (RSM) and aims to measure the similarity between two representations,
while maintaining invariance to scaling and rotation. The linear variant, employs mean-centered
representations and a linear kernel to construct the RSM, followed by the use of the Hilbert-Schmidt
Independence Criterion (HSIC) for RSM comparison. The resulting HSIC value is then normalized.
However, recent studies have highlighted limitations of CKA. For instance, it has been shown that
CKA lacks sensitivity to the removal of low variance principal components from representations
(Ding et al., 2021). Additionally, it does not satisfy the triangle inequality, making it problematic for
use as a discrepancy minimization objective function in downstream tasks (Williams et al., 2021).
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Representation Topology Divergence (RTD): RTD, a Topology-based Representational Similarity
Measure, approximates representation manifolds using simplices and computes RSMs for two
representations, R and Q, via Euclidean distance. It employs a Vietoris Rips Filtration to identify
active topological features in minG(R,Q) but not in G(R). The set of all persistence intervals is
then used to quantify the value of RTD. RTD’s strength lies in its stronger correlation with model
prediction disagreements compared to CKA. However, it has a cubic runtime complexity relative to
the number of simplices due to the Vietoris Rips filtration, limiting its practicality to n < 500. We
also observed considerable runtime variations across datasets.

Dimensionality Reduction: Recent research in dimensionality reduction addresses the challenges
of high-dimensional data. Classical methods like PCA and MDS, as well as local structure-
preserving approaches like t-SNE (van der Maaten & Hinton, 2008), UMAP (McInnes et al.,
2018), and PaCMAP (Wang et al., 2021), remain popular. However, these methods are less prac-
tical for large real-world datasets due to high computational demands. Autoencoders (Hinton &
Salakhutdinov, 2006) and variational autoencoders (Kingma & Welling, 2022) offer interpretable
low-dimensional representations but may not preserve the initial data’s topology. Topological au-
toencoders (Moor et al., 2020) introduced an additional loss term to maintain topological character-
istics in latent representations. Similarly, RTD-AE (Trofimov et al., 2023) enhanced autoencoders
with their topology-preserving metric RTD and outperformed TopoAE and classical techniques, es-
tablishing itself as the state-of-the-art in dimensionality reduction.

3 NORMALIZED SPACE ALIGNMENT

NSA comes under a category of similarity metrics called Representational Similarity Matrix-Based
(RSM) Measures (Klabunde et al., 2023). Given a representation R : N × D, all RSM based
measures generate a matrix of instance wise similarities D ∈ RN×N where Di,j := d(Ri, Rj).
Now for two representations R and R′, we obtain two RSMs which we can operate upon to compute
a similarity measure. Kornblith et al. (2019); Székely et al. (2007); Kriegeskorte et al. (2008); Chen
(2022) are popular examples of RSM based similarity measures.

3.1 DEFINITION

The following formula is used to compute the NSA between two point clouds X = {x1, . . . , xN}
and Y = {y1, . . . , yN}. d(·, ·) denotes the euclidean distance between two vectors.

NSA(X,Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣ d(xi, xj)

maxx∈X d(x, 0)
− d(yi, yj)

maxy∈Y d(y, 0)

∣∣∣∣ .
Essentially, we compute the differences of normalized distances (L1-norm) of a point to all other
points in the two representations, and then take the average of all these differences.

3.2 NSA AS A PSEUDOMETRIC

We show that NSA is a psuedometric by proving the necessary properties in the Appendix: •
NSA(X,X) = 0 (lemma 1), • Symmetry (lemma 2), • Non-negativity (lemma 3), • Triangle In-
equality (lemma 4).

3.3 NSA AS A SIMILARITY METRIC

We adopt the necessary conditions of Invariance to Isotropic Scaling, Invariance to Orthogonal
Transformation, and (Not) Invariance to Invertible Linear Transformation (ILT) as proposed by Ko-
rnblith et al. (2019) for a similarity metric. We establish these condition in Appendix B: lemma 7),
lemma 9, and B.3. These conditions ensure that the similarity metric would be unaffected by rotation
or rescaling of the representation space. Kornblith et al. (2019) proved that Invariance to ILT for a
similarity metric gives the same result for any representation having width greater than or equal to
the dataset size. They also discuss other scenarios wherein Invariance to ILT would be detrimental
to similarity indices.
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3.4 COMPLEXITY ANALYSIS

NSA’s computational complexity is given by O(N2D) where N is the number of datapoints and D
is max(D(R), D(R′)) where R and R′ are the two representation spaces and D(·) is the dimen-
sionality of the space. In practice, NSA’s computation is rapid as we use torch.cdist to compute
pairwise distances on the GPU. CKA has similar complexity to NSA. While RTD also starts off
with O(N2D) operations to generate pairwise distances, the barcode computation is cubic in the
number of simplices involved. Running times of NSA-AE are given in Table 2. NSA-AE is several
times faster than RTD-AE and it can run on much larger batch sizes.

3.5 IMPROVING ROBUSTNESS OF NSA

Formally, NSA is normalized by the point that is furthest away from the origin for the representation
space. In practice, NSA tends to yield more robust results and exhibits reduced susceptibility to
outliers when distances are normalized by scaling relative to a quantile of the distances measured
from the origin (e.g., 0.98 quantile). This quantile-based approach ensures that the distances are
adjusted proportionally, taking into account the spread of values among the points with respect to
their distances from the origin. It also ensures that any outliers do not affect the rescaling of the
point cloud to the unit space.

3.6 COMPARING DIFFERENT INITIALIZATIONS

GCN GSAGE GAT CGCN

RTD

NSA

Figure 1: Sanity Tests for Node Classification (Amazon Computers Dataset). The heatmaps show
layer-wise dissimilarity values for two different initialization of the same dataset on four different
GNN architectures. The first row shows the RTD values and the second row shows the NSA values.
NSA shows a stronger layer-wise correlation. Results for CKA’ are in Appendix C

We begin with a basic sanity test for evaluating similarity metrics as suggested by Kornblith et al.
(2019). When we have two networks that are structurally identical but trained from different initial
conditions, we expect that, for each layer in one, the most similar layer in the other should be the
corresponding layer that matches in structure. We perform tests on four different GNN architectures;
Graph Convolution Networks (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), Graph
Attention Networks (Veličković et al., 2018) and ClusterGCN (Chiang et al., 2019). We perform
the tests when the models on trained on the task on Node Classification on the Amazon Computers
dataset (Shchur et al., 2019) in Figure 1. We also have sanity tests for the models when they are
trained on Link Prediction in Appendix D. We also showcase the results of CKA’ and RTD to em-
pirically demonstrate that NSA is more nuanced than RTD and CKA’, and is capable of identifying
patterns that are expected based on the design of the architectures. Both NSA and RTD compare
dissimilarity while CKA compares similarity. To ensure ease of comparison between the metrics,
throughout this paper we use 1 − CKA to show the performance of CKA and label it CKA′. For
further details on the architectures, model setup and hyperparameters, please refer to Appendix L.
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3.7 CONVERGENCE TESTS

(a) GAT Epochwise Convergence Heatmap (b) CGCN Epochwise Convergence Heatmap

(c) Test Accuracy (d) Test Accuracy

Figure 2: Convergence Tests for Node Classification on the Amazon Computers Dataset. The rep-
resentation for each layer is compared epochwise against that layer’s final epoch representation.
NSA’s convergence corresponds strongly with the test accuracy convergence for both models

We examine epoch-wise convergence by comparing representations between the current and final
epochs. Figure 2 illustrates our results for GAT and CGCN when trained on the Amazon Dataset
on node classification. We observe that NSA’s convergence corresponds with the test accuracy
convergence of the model. We show results for other architectures on node classification in Figure
17 and showcase the results for link prediction in Figure 16

4 NSA AS A LOSS FUNCTION

Here, we establish the viability of NSA as a loss function and use this formulation to define an
autoencoder NSA-AE. To establish the use of NSA as a loss function, we need to demonstrate its
non-negativity (lemma 3), nullity (lemma 1) and continuity, and develop a differentiation scheme.
Non-negativity and nullity are shown in Appendix A. The other two properties are proven below.

4.1 DIFFERENTIABILITY OF NSA

To derive the sub-gradient ∂NSA(X,Y )
∂xi

, we first define the following notation. Let I : {T, F} →
{0, 1} be a function that takes as input some condition and outputs 0 or 1 such that I(T ) = 1 and
I(F ) = 0. Let DX = maxx∈X(d(x, 0)). Then it is easy to see that

∂DX

∂xi
=

xi

d(xi, 0)
I{argmax

x∈X
(d(x, 0)) = i}.

Also, notice that ∂d(xi,xj)
xi

=
xi−xj

d(xi,xj)
, and that for j ̸= i and k ̸= i, ∂d(xj ,xk)

xi
= 0.

Let mi,j
X =

d(xi,xj)
DX

and mi,j
Y =

d(yi,yj)
DY

. Hence, combining, we get

∂mj,k
X

∂xi
=

∂d(xj ,xk)
∂xi

DX
−

d(xj , xk)
∂DX

∂xi

(DX)2
, where these partial differentials are derived above.

Lastly, notice that
∂|mj,k

X −mj,k
Y |

∂mj,k
X

= (−1)I(m
j,k
Y >mj,k

X ).
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Combining all the above, we get

∂NSA(X,Y )

∂xi
=

1

N2

∑
1≤j,k≤N

∂
∣∣∣mj,k

X −mj,k
Y

∣∣∣
∂mj,k

X

∂mj,k
X

∂xi
=

1

N2

∑
1≤j,k≤N

(−1)I(m
j,k
Y >mj,k

X ) ∂m
j,k
X

∂xi
.

Sub-gradients ∂NSA(X,Y )
∂yi

can be similarly derived.

4.2 CONTINUITY

We prove the continuity of NSA by showing that NSA is a composition of continuous functions
(Carothers, 2000, Theorem 5.10). Let

fi,j(X,Y ) =

∣∣∣∣ d(xi, xj)

maxx∈X(d(x, 0))
− d(yi, yj)

maxy∈Y (d(y, 0))

∣∣∣∣ .
It’s easy to see that NSA(X,Y ) =

1

N2

∑
1≤i,j≤N

fi,j(X,Y ).

Since a sum of continuous functions is continuous, all we need to show is that fi,j(X,Y ) is con-
tinuous for all 1 ≤ i, j ≤ N . This is easy to see because fi,j(X,Y ) can be seen as a composition
of d(·, ·) and max(·), along with the algebraic operations of subtraction, division and taking the
absolute value. All the above operations are continuous everywhere1, we get that their composition
is also continuous everywhere. Hence, NSA(·, ·) is continuous.

4.3 DEFINING NSA-AE: AUTOENCODER USING NSA

To evaluate the efficacy of NSA as a structural discrepancy minimization metric, we take inspira-
tion from TopoAE and RTD-AE, and use NSA as loss function in autoencoders for dimensionality
reduction, thus defining NSA-AE. MDS and ISOMAP also aim to preserve pairwise distances but
they do not scale well. Since NSA can be used in autoencoders with mini-batch training, NSA-AE
runs almost as fast as a regular autoencoder. We compare the performance of NSA-AE against PCA,
UMAP, a regular autoencoder, TopoAE and RTD-AE on four real world datasets.

The performance of NSA-AE is evaluated on the structural and topological similarity between the
input data X and the latent data Z. In order to evaluate the performance, we use: (1) linear correlation
of pairwise distances, (2) triplet distance ranking accuracy (Wang et al., 2021), (3) RTD, (4) triplet
distance ranking accuracy between cluster centers, and (5) NSA. As seen in Table 1, NSA-AE has
better correlation between the original data and the latent data compared to the other models. NSA-
AE outperforms the other approaches on all metrics but RTD, where it ranks just below RTD-AE.
NSA-AE achieves MSE and running times similar to a normal autoencoder while previous works
are several times slower, as shown in Table 2 in the Appendix.

5 ANALYZING ADVERSARIAL ATTACKS WITH NSA

Addressing the issue of adversarial attacks in machine learning models, particularly in the context of
Graph Neural Networks (GNNs), is of paramount importance. Adversarial attacks pose a significant
threat in various domains, including social networks, recommendation systems, and cybersecurity,
where GNNs are extensively employed. To fortify GNNs against adversarial challenges, the incor-
poration of a structure-preserving minimization term in the training process is a promising approach.
Such a term enforces the preservation of key structural characteristics within the data, rendering the
model less susceptible to adversarial perturbations. However, the efficacy of this approach greatly
hinges on the availability of a suitable similarity metric capable of discerning even the subtlest per-
turbations in the representation space.

1Note that division is not continuous when the denominator goes to zero. Since, the denominators are
maxx∈X(d(x, 0)) and maxy∈Y (d(y, 0)), as long as neither of the representations is all zero, the denominator
does not go to zero.
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Quality measure
Dataset Method L. C. T. A. RTD T. A. C.C NSA
MNIST PCA 0.910 0.871± 0.008 6.69± 0.21 0.986± 0.117 0.0817± 0.0025

UMAP 0.424 0.620± 0.013 18.06± 0.48 0.824± 0.381 0.2305± 0.0031
AE 0.801 0.778± 0.007 7.47± 0.20 0.828± 0.377 0.0571± 0.0011
TopoAE 0.765 0.771± 0.010 6.16± 0.23 0.886± 0.318 0.0477± 0.0011
RTD-AE 0.837 0.811± 0.004 4.26± 0.14 0.842± 0.365 0.1694± 0.0024
NSA-AE 0.942 0.885± 0.006 5.44± 0.12 0.944± 0.230 0.0198± 0.0001

F-MNIST PCA 0.978 0.951± 0.006 5.91± 0.12 1.000± 0.0 0.1722± 0.0038
UMAP 0.592 0.734± 0.012 12.16± 0.39 0.916± 0.277 0.1420± 0.0011
AE 0.872 0.850± 0.008 5.60± 0.21 0.926± 0.262 0.0527± 0.0028
TopoAE 0.875 0.854± 0.009 4.27± 0.15 0.946± 0.226 0.111± 0.0027
RTD-AE 0.949 0.902± 0.004 3.05± 0.12 0.972± 0.165 0.0349± 0.0015
NSA-AE 0.987 0.952± 0.002 4.11± 0.21 0.992± 0.089 0.0091± 0.0001

CIFAR-10 PCA 0.972 0.926± 0.009 4.99± 0.16 0.994± 0.077 0.1809± 0.0046
UMAP 0.756 0.786± 0.010 12.21± 0.22 0.956± 0.205 0.1316± 0.0026
AE 0.834 0.836± 0.006 4.07± 0.28 0.920± 0.271 0.0616± 0.0019
TopoAE 0.889 0.854± 0.007 3.89± 0.11 0.942± 0.234 0.0625± 0.0014
RTD-AE 0.971 0.922± 0.002 2.95± 0.08 0.976± 0.153 0.0113± 0.0003
NSA-AE 0.985 0.936± 0.004 3.07± 0.11 0.984± 0.125 0.0077± 0.0001

COIL-20 PCA 0.966 0.932± 0.005 6.49± 0.23 0.992± 0.090 0.2204± 0.0
UMAP 0.274 0.567± 0.016 15.50± 0.67 0.669± 0.471 0.1104± 0.0
AE 0.850 0.836± 0.008 9.57± 0.27 0.889± 0.314 0.0758± 0.0
TopoAE 0.804 0.805± 0.011 7.33± 0.21 0.885± 0.319 0.0676± 0.0
RTD-AE 0.908 0.871± 0.005 5.89± 0.10 0.891± 0.311 0.0523± 0.0
NSA-AE 0.955 0.919± 0.004 7.46± 0.23 0.939± 0.240 0.0157± 0.0

Table 1: Autoencoder results. NSA-AE outperforms or almost matches all other approaches on
all the evaluation metrics. RTD-AE, which explicitly minimizes on RTD has a slightly lower RTD
value while PCA has marginally higher Triplet Ranking Accuracy on Cluster Centers.

In this experimental study, we subject five distinct Graph Neural Network (GNN) architectures to
both poisoning and evasion adversarial attacks using projected gradient descent (Xu et al., 2019).
We use the regular GCN along with four robust GNN variants; SVD-GCN (Entezari et al., 2020),
GNNGuard (Zhang & Zitnik, 2020), GRAND (Zhang & Zitnik, 2020) and ProGNN (Jin et al.,
2020b). To assess the vulnerability of these architectures, we manipulated the initial adjacency
matrices by introducing perturbations ranging from 5% to 25%. The objective was to gauge the
impact of these perturbations on the misclassification rates of the GNN models and to see if NSA
shows a strong correlation to the misclassification rates over different perturbation rates.

(a) (b) (c) (d)

Figure 3: Robustness tests with NSA. (a) Variation of Misclassification Rate against Data Perturba-
tion Rate for GNN architectures under global evasion attack. (b) NSA against perturbation rate for
GNN architectures under global evasion attack. (c) Variation of Misclassification Rate against Data
Perturbation Rate for GNN architectures under global poisoning attack. (b) NSA against perturba-
tion rate for GNN architectures under global poisoning attack

Remarkably, our findings revealed a compelling pattern: the variation of NSA over perturbation
rate for all the architectures showed a distinct similarity to the trend of the misclassification rates
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exhibited by the various GNN architectures. NSA also shows in Figure 3(a) that SVD-GCN’s per-
formance on global evasion attacks is much worse than the misclassification rate over various pertur-
bation budgets. This is consistent with the failure of SVD-GCN on adaptive attacks as observed in
(Mujkanovic et al., 2022). GNNGuard, emphasizing GNN architecture, and GRAND, focusing on
training principles, consistently exhibit a strong performance in both attack scenarios. ProGNN per-
forms on par with a normal GCN while SVD-GCN has the most erratic performance. Our ranking
of GNNs is loosely consistent with the previous works that rank GNNs on robustness to adversarial
attacks (Jin et al., 2020a; Mujkanovic et al., 2022). These results shed light on the intricate relation-
ship between graph structure and model performance, offering insights into the effectiveness of our
metric as a valuable tool for evaluating GNN resilience.

6 ARE GNNS TASK SPECIFIC LEARNERS?

We use NSA to investigate whether representations produced by GNNs are specific to the down-
stream task. For this, we explored the similarity of representations of different GNN architectures
when trained on the same task versus their similarity when trained on different downstream tasks.

6.1 CROSS ARCHITECTURE TESTS ON THE SAME DOWNSTREAM TASK

NSA

(a) GCN vs CGCN (b) GraphSAGE vs GAT (c) GCN vs CGCN (d) GCN vs GSAGE

Figure 4: Cross Architecture Tests using NSA on the Amazon Computers Dataset. (a) Layerwise
NSA values between GCN and ClusterGCN on Node Classification (b) Layerwise NSA values be-
tween GraphSAGE and GAT on Node Classification (c) Layerwise NSA values between GCN and
ClusterGCN on Link Prediction (d) Layerwise NSA values between GCN and GSAGE on Link Pre-
diction. Similar architectures showcase a layerwise pattern when trained on the same task.

We tested layerwise representational similarity on the task of node classification (on the Amazon
Computers Dataset) across different GNN architectures: GCN, ClusterGCN (CGCN), GraphSAGE,
and GAT. Just like in the sanity tests, models that are similar in architecture or training paradigms
have a higher layerwise similarity: this implies that the highest similarity is between GCN and
ClusterGCN that differ only in their training paradigms. We also observe (a less pronounced) linear
relationship between the other pairs of architectures. These results are shown in Figure 4.

6.2 ARCHITECTURE TESTS ON DIFFERENT DOWNSTREAM TASKS

We conducted experiments with different downstream tasks to assess layerwise similarity between
two models, both of which shared structural identity except for disparities in their final layers.
Specifically, we employed node classification and link prediction as the two downstream tasks for
our investigations. We present our findings in Figure 5. They reveal that there is little relationship
across layers for any of the four architectures.

The results presented in this section indicate that that different GNN architectures have similar rep-
resentation spaces when trained on the same downstream task and conversely, similar architectures
have different representation spaces when trained on different downstream tasks. Extending this
idea further, it should be possible to train Graph Neural Networks to conform to a task specific rep-
resentation template. This structural template will be agnostic of GNN architectures and provide a
high degree of functional similarity. If we train GNNs to minimize discrepancy loss with such a task
specific template, we could train more directly and without adding downstream layers of tasks.
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GCN GSAGE GAT CGCN

NSA

Figure 5: Effect of Downstream Task on Representations Achieved by the Same Architecture (Ama-
zon Computers Dataset). The layerwise dissimilarity of four GNN architectures is compared on two
different downstream tasks: Node Classification and Link Prediction. There is no observable corre-
lation across layers suggesting that the GNNs generate different representation spaces for the same
dataset on different downstream tasks.

7 DISCUSSION AND CONCLUSION

In conclusion, we have demonstrated that the proposed measure of NSA is simple, efficient, and
useful across many aspects of analysis/synthesis of representation spaces: robustness across initial-
izations, convergence across epochs, autoencoders, adversarial attacks, and effects of downstream
tasks across architectures. Its simplicity should allow it to be useful in many applications and gen-
eralizations where scalability is desired. We point out some such avenues next.

One possibility for future research would be to combine NSA with measures of intrinsic dimension-
ality (Camastra & Staiano, 2016; Campadelli et al., 2015). This is motivated by the observation that
real-world data presented in a high-dimensional space usually lies along a manifold of much lower
dimension (Goodfellow et al., 2016). A challenge here would be ensuring that the resulting measure
does not add much of a computational overhead to NSA.

Another potential modification to NSA involves squaring the pairwise differences instead of em-
ploying the L1 norm, a variation that, in our initial experiments, yielded performance similar to
the L1 variant but necessitated a distinct set of hyperparameters for optimization. Additionally, the
choice of the distance metric and the normalization term in NSA warrant further consideration.

Empirical findings by Kornblith et al. (2019) have indicated minimal improvement with the RBF
variant of the Centered Kernel Alignment (CKA) over the linear kernel CKA. However, it is crucial
to recognize that in high-dimensional spaces, the Euclidean distance metric may not be particularly
effective, as highlighted by theoretical works such as Bellman’s ”The Curse of Dimensionality”
(Bellman, 1961). Despite this, Euclidean distance remains prevalent in various domains, including
contrastive (Chen et al., 2020) or triplet losses (Schroff et al., 2015), style transfer (Johnson et al.,
2016) and similarity indices, often yielding successful empirical results. Our future investigations
intend to explore alternative distance measures, potentially considering non-linear options such as
geodesic distance and assessing their viability.

It is conceivable to extend the concept of task-specific templates, as discussed in Section 6, to sce-
narios where domain-specific information guides the embedding of objects. Take, for instance, the
context of signed networks, where it is established that pairs with positive connections should ex-
hibit proximity, while those with negative connections should be positioned distantly. Disconnected
(’dont care’) pairs would ideally find themselves in an intermediate position. The challenge lies in
specifying such embeddings in a manner that allows NSA to optimize them directly, thereby by-
passing the need for intricate embedding methods as proposed by Huang et al. (2022). This opens
up a fascinating avenue for exploration, as we seek innovative approaches to articulate and optimize
these embedding specifications within the context of NSA.

Finally, on the question of structural similarity and functional similarity, Davari et al. (2023) high-
light CKA’s susceptibility to subset translations and situations where CKA changes while functional
behavior remains consistent. While NSA is more tuned to functional similarity, we plan to carry out
a similar analysis in the future.
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8 REPRODUCIBILITY STATEMENT

Our code is anonymously available at https://anonymous.4open.science/r/NSA. The code includes
notebooks with instructions to reproduce all the experiments presented in this paper. To reproduce
Table 1 and Table 2 you will access the NSA AE folder. The hyperparameter setup to reproduce
the autoencoder results are in Table 3. To reproduce all the heatmaps in the paper, you will need
to access the GNN analysis folder. The hyperparameter setup to reproduce these results is given in
Table 4. To reproduce the results in Section 5, you will access the Adversarial Analysis folder. No
hyperparameter setup is necessary to run the notebooks in this section.
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A PROOFS FOR NSA AS A PSEUDOMETRIC

A.1 NSA(X,X) = 0

Lemma 1 (Identity). Let X be a point cloud over some space, then NSA(X,X) = 0.

Proof. Let X = {x1, . . . , xN}. Let maxx∈X(d(x, 0)) = D. Then

NSA(X,X) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

D
− d(xi, xj)

D

∣∣∣∣ .
Simplifying, we get

NSA(X,X) =
1

N2D

∑
1≤i,j≤N

|d(xi, xj)− d(xi, xj)| = 0.

Lemma 2 (Symmetry). Let X,Y be two point clouds of the same size, then NSA(X,Y ) =
NSA(Y,X).

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}. Let maxx∈X(d(x, 0)) = DX and
maxy∈Y (d(y, 0)) = DY . Then

NSA(X,Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ .
Since |a− b| = |b− a|,

NSA(X,Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(yi, yj)DY
− d(xi, xj)

DX

∣∣∣∣ .
Hence, NSA(X,Y ) = NSA(Y,X).

Lemma 3 (Non-negativity). Let X,Y be two point clouds of the same size, then NSA(X,Y ) ≥ 0.

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}. Let maxx∈X(d(x, 0)) = DX and
maxy∈Y (d(y, 0)) = DY . Then

NSA(X,Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ .
Since, for all i, j, ∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣ ≥ 0,

we get NSA(X,Y ) ≥ 0.

Lemma 4 (Triangle inequality). Let X,Y and Z be three point clouds of the same size, then
NSA(X,Z) ≤ NSA(X,Y ) + NSA(Y,Z).

Proof. Let X = {x1, . . . , xN}, Y = {y1, . . . , yN} and Z = {z1, . . . , zN}. Let
maxx∈X(d(x, 0)) = DX , maxy∈Y (d(y, 0)) = DY and maxz∈Z(d(z, 0)) = DZ . Then

NSA(X,Z) =
1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(zi, zj)

DZ

∣∣∣∣ .
For each i, j, add and subtract d(yi,yj)

DY
, then

NSA(X,Z) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(xi, xj)

DX
− d(yi, yj)

DY

)
+

(
d(yi, yj)

DY
− d(zi, zj)

DZ

)∣∣∣∣ .
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Since |a+ b| ≤ |a|+ |b|,

NSA(X,Z) ≤ 1

N2

∑
1≤i,j≤N

(∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣+ ∣∣∣∣d(yi, yj)DY
− d(zi, zj)

DZ

∣∣∣∣) .

Hence,

NSA(X,Z) ≤ 1

N2

∑
1≤i,j≤N

∣∣∣∣d(xi, xj)

DX
− d(yi, yj)

DY

∣∣∣∣+ 1

N2

∑
1≤i,j≤N

∣∣∣∣d(yi, yj)DY
− d(zi, zj)

DZ

∣∣∣∣ ,
or NSA(X,Z) ≤ NSA(X,Y ) + NSA(Y, Z).

From Lemma 1, Lemma 2, Lemma 3 and Lemma 4, we see that NSA is a psuedometric over the
space of point clouds.

B PROOFS FOR NSA AS A SIMILARITY METRIC

B.1 INVARIANCE TO ISOTROPIC SCALING

Lemma 5 (Invariance to Isotropic scaling in the first coordinate). Let X and Y be two point clouds
of the same size. Let c ∈ R and c ̸= 0, Xc be the point cloud with each point in X scaled by a factor
of c, then NSA(X,Y ) = NSA(Xc, Y ).

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}, then Xc = {cx1, . . . , cxN}. Let
maxx∈X(d(x, 0)) = DX , maxy∈Y (d(y, 0)) = DY and maxx∈Xc(d(x, 0)) = DXc . Since, each
point in Xc is the c times each point in X . Then, we can write DXc = maxx∈X(d(cx, 0)). Since, for
any two points, x1 and x2, d(cx1, cx2) = |c|d(x1, x2), then DXc

= |c|maxx∈X(d(x, 0)). Hence,
Dxc

= |c|DX . From the definition of NSA,

NSA(Xc, Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(cxi, cxj)

DXc

− d(yi, yj)

DY

)∣∣∣∣ .
Again, using d(cxi, cxj) = |c|d(xi, xj) and DXc

= |c|DX ,

NSA(Xc, Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣( |c|d(xi, xj)

|c|DX
− d(yi, yj)

DY

)∣∣∣∣ .
Simplifying,

NSA(Xc, Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(xi, xj)

DX
− d(yi, yj)

DY

)∣∣∣∣ .
Hence, NSA(Xc, Y ) = NSA(X,Y ).

By Lemma 2, we can see that this gives us invariance to isotropic scaling in the second coordinate
as well.

Lemma 6 (Invariance to Isotropic scaling in the second coordinate). Let X and Y be two point
clouds of the same size. Let c ∈ R and c ̸= 0, Yc be the point cloud with each point in Y scaled by
a factor of c, then NSA(X,Y ) = NSA(X,Yc).

Combining Lemma 5 and Lemma 6, we get the required lemma.

Lemma 7 (Invariance to Isotropic scaling). Let X and Y be two point clouds of the same size. Let
c1, c2 ∈ R, c1 ̸= 0 and c2 ̸= 0, Xc1 be the point cloud with each point in X scaled by a factor
of c1 and Yc2 be the point cloud with each point in Y scaled by a factor of c2, then NSA(X,Y ) =
NSA(Xc1 , Yc2).
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B.2 INVARIANCE TO ORTHOGONAL TRANSFORMATION

Lemma 8 (Invariance to Orthogonal transformation in the first coordinate). Let X and Y be two
point clouds of the same size. Let U be an orthogonal transformation on the point space of X , XU

be the point cloud with each point in X transformed using U , then NSA(X,Y ) = NSA(XU , Y ).

Proof. Let X = {x1, . . . , xN} and Y = {y1, . . . , yN}, then XU = {Ux1, . . . , UxN}. Let
maxx∈X(d(x, 0)) = DX , maxy∈Y (d(y, 0)) = DY and maxx∈XU

(d(x, 0)) = DXU
. Since, each

point in XU is the U times each point in X . Then, we can write DXU
= maxx∈X(d(Ux, 0)).

Since, for any two points, x1 and x2, d(Ux1, x2) = d(x1, U
Tx2), and UT 0 = 0, then DXc =

maxx∈X(d(x, 0)). Hence, Dxc = DX . From the definition of NSA,

NSA(XU , Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(Uxi, Uxj)

DXc

− d(yi, yj)

DY

)∣∣∣∣ .
Again, using d(Uxi, Uxj) = d(xi, U

TUxj), and UTU = I ,

NSA(XU , Y ) =
1

N2

∑
1≤i,j≤N

∣∣∣∣(d(xi, xj)

DX
− d(yi, yj)

DY

)∣∣∣∣ .
Hence, NSA(XU , Y ) = NSA(X,Y ).

By Lemma 2, we get invariance to orthogonal transformation in the second coordinate too and
combining, we get the required lemma.

Lemma 9 (Invariance to Orthogonal transformation). Let X and Y be two point clouds of the same
size. Let U1 be an orthogonal transformation on the point space of X , XU1 be the point cloud
with each point in X transformed using U1. Similarly, let U2 be an orthogonal transformation
on the point space of Y , YU2 be the point cloud with each point in Y transformed using U2, then
NSA(X,Y ) = NSA(XU1

, YU2
).

B.3 NOT INVARIANT UNDER INVERTIBLE LINEAR TRANSFORMATION (ILT)

We can easily see this with a counter example. Let X = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Let Y =
{(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Define A to be an invertible linear map such that A(1, 0, 0) = (2, 0, 0),
A(0, 1, 0) = (0, 1, 0) and A(0, 0, 1) = (0, 0, 1). Let XA be the point cloud with each point
in X transformed using A. Then from some calculation, we can see that NSA(X,Y ) = 0 but
NSA(XA, Y ) = 1

9 . Hence, we can see that NSA is not invariant under Invertible Linear Transfor-
mations.

C SANITY TESTS FOR NODE CLASSIFICATION

We show the results for node classification across GNN architectures for CKA’. We also show the
heatmaps for node classification on the Flickr Dataset for NSA. The heatmaps for the sanity tests on
the task of Node Classification are given in Figure 6

GCN GSAGE GAT CGCN

CKA’

Figure 6: Sanity Tests for Node Classification for CKA′ on Amazon Computers Dataset
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D SANITY TESTS FOR LINK PREDICTION

We show the results for link prediction across GNN architectures for all three similarity metrics. We
observe that although all 3 metrics pass the sanity test, NSA shows the best gradient in similarity
across adjacent layers of some models like GAT and CGCN. The heatmaps for the sanity tests for
Link Prediction are given in Figure 7

GCN GSAGE GAT CGCN

CKA’

RTD

RTD

Figure 7: Sanity Tests for Link Prediction

E SANITY TESTS ON THE FLICKR DATASET

A node classification sanity test is performed on the Flickr (Zeng et al., 2020) dataset to prove that
NSA works across any dataset. We show the results for NSA only in Figure 8

GCN GSAGE GAT CGCN

CKA’

Figure 8: Sanity Test with the Flickr Dataset using NSA

F CROSS DOWNSTREAM TASK FOR CKA′ AND RTD

We show the performance of CKA’ and RTD when we test how GNN architectures compare across
different downstream tasks. Similar to NSA, CKA’ and RTD fail to show any noticeable pattern
across layers. The heatmaps for cross downstream tasks with CKA’ and RTD are given in Figure 9
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GCN GSAGE GAT CGCN

RTD

CKA’

Figure 9: Cross Downstream Task Tests CKA′ and RTD

G CROSS ARCHITECTURE TESTS

G.1 CROSS ARCHITECTURE TESTS WITH NSA

The cross architecture test results for NSA on link prediction and node classification for the architec-
tures not shown in Figure 4 are given in Figure 10 and Figure 11. These are architectures with low
degree of similarity hence the we do not observe a strong linear relationship across layers with NSA.

NSA

(a) GCN vs GAT (b) GCN vs GSAGE (c) GAT vs ClusterGCN (d) GSAGE vs CGCN

Figure 10: Cross Architecture Tests using Normalized Space Alignment for Node Classification for
the remaining architectures

NSA

(a) GCN vs GAT (b) GraphSAGE vs GAT (c) GAT vs ClusterGCN (d) GSAGE vs CGCN

Figure 11: Cross Architecture Tests using Normalized Space Alignment for Link Prediction for the
remaining four architectures
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G.2 CROSS ARCHITECTURE TESTS WITH RTD AND CKA′ ON NODE CLASSIFICATION

The cross architecture test results for CKA’ and RTD on Node Classification are shown in Figure 12
and Figure 13

Centered
Kernel

Alignment’ (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 12: Cross Architecture Tests using Centered Kernel Alignment’ for Node Classification

Representation
Topology

Divergence (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 13: Cross Architecture Tests using Representation Topology Divergence for Node Classifi-
cation
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G.3 CROSS ARCHITECTURE TESTS WITH RTD AND CKA’ ON LINK PREDICTION

The cross architecture test results for CKA’ and RTD on Link Prediction are shown in Figure 14 and
Figure 15. We observe that CKA’ and RTD do not show a layerwise pattern as well as NSA does.
We can observe that RTD manages to capture the low dissimilarity between corresponding layers of
GCN and ClusterGCN and for some other models but CKA’ fails to capture the layerwise similarity
for any architecture combination.

Centered
Kernel

Alignment’ (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 14: Cross Architecture Tests using Centered Kernel Alignment’ for Link Prediction

Representation
Topology

Divergence (a) GCN vs ClusterGCN (b) GraphSAGE vs GAT (c) GCN vs GAT

(d) GCN vs GraphSAGE (e) GAT vs ClusterGCN (f) GSAGE vs CGCN

Figure 15: Cross Architecture Tests using Representation Topology Divergence for Link Prediction

20



Under review as a conference paper at ICLR 2024

H CONVERGENCE TESTS

I LINK PREDICTION

The convergence tests for Link Prediction across all four architectures are given in Figure 16. Link
Prediction models were trained for 200 epochs and show similar patterns to the ones observed with
node classification. NSA also captures the variations in the final layer of ClusterGCN causing oscil-
lation in the test accuracy in Figure 16 (f). All convergence tests are performed with NSA only.

(a) GCN Epochwise Convergence Heatmap (b) SAGE Epochwise Convergence Heatmap

(c) Test Accuracy (d) Test Accuracy

(e) GAT Epochwise Convergence Heatmap (f) CGCN Epochwise Convergence Heatmap

(g) Test Accuracy (h) Test Accuracy

Figure 16: Convergence Tests on Link Prediction

I.1 NODE CLASSIFICATION

The convergence tests on Node Classification for Graph Attention Network and ClusterGCN are
given in Figure 17. Just like GCN and GraphSAGE, we observe a strong correlation between layer-
wise NSA convergence and test accuracy for Graph Attention Network and ClusterGCN
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(a) GCN Epochwise Convergence Heatmap (b) SAGE Epochwise Convergence Heatmap

(c) Test Accuracy (d) Test Accuracy

Figure 17: Convergence Tests on Node Classification

J RUNNING TIME AND RECONSTRUCTION LOSS FOR AUTOENCODER

We show the results in Table 2

Metric
Dataset Method Time per epoch Train MSE Test MSE

MNIST AE 2.344 7.64e-3 8.62e-3
TopoAE 39.168 6.89e-3 8.16e-3
RTD-AE 51.608 9.36e-3 1.07e-2
NSA-AE 5.816 8.75e-3 1.00e-2

F-MNIST AE 6.436 8.99e-03 9.79e-03
TopoAE 37.26 8.94-03 9.83e-03
RTD-AE 59.94 1.12e-02 1.24e-02
NSA-AE 5.764 9.49e-03 1.04e-02

CIFAR-10 AE 5.16 1.56e-02 1.65e-02
TopoAE 58.664 1.54e-02 1.68e-02
RTD-AE 56.172 1.60e-02 1.91e-02
NSA-AE 6.996 1.58e-02 1.71e-02

COIL-20 AE 2.012 1.67e-02 -
TopoAE 4.876 1.09e-02 -
RTD-AE 16.404 1.90e-02 -
NSA-AE 8.716 1.80e-02 -

Table 2: Reconstruction Loss and Time Per Epoch for different Autoencoder architectures. All
architectures were trained for 250 epochs with the auxiliary loss (TopoLoss, RTD, NSA) kicking in
after 60 epochs.
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K AUTOENCODER HYPERPARAMETERS

The hyperparameter setup for all the autoencoder architectures is detailed in Table 3. All autoen-
coder architectures are trained using pytorch-lightning and the input data is normalized using a
MinMaxScaler.

Dataset Name Batch Size LR Hidden Dim Layers Epochs Metric Start Epoch

MNIST 256 10−4 512 3 250 60

F-MNIST 256 10−4 512 3 250 60

CIFAR-10 256 10−4 512 3 250 60

COIL-20 256 10−4 512 3 250 60

Table 3: Autoencoder Hyperparameters. All four architectures used the same hyperparameters. To
ensure similarity of testing conditions we replicate the hyperparameter setup from Trofimov et al.
(2023)

L GNN HYPERPARAMETERS

The hyperparameter setup for all the GNN architectures is detailed in Table 4

Architecture Layers Hidden Dim LR Epochs Additional Info

GCN 4 128 0.001 200 -

GraphSAGE 4 128 0.001 200 Mean Aggregation

GAT 4 128 0.001 200 8 heads with Hid Dim 8 each

CGCN 4 128 0.001 200 8 subgraphs

Table 4: GNN Architecture Information

M GNN METRICS

The test accuracy for node classification and the ROC AUC value for link prediction is detailed in
Table 5

Architecture Accuracy (NC) ROC AUC (LP)

GCN 0.8257 0.8638

GraphSAGE 0.8800 0.8068

GAT 0.8273 0.7997

CGCN 0.8200 0.8716

Table 5: GNN Metric Data on Amazon Computer Dataset. Test Accuracy is for Node Classification
and ROC AUC Score is for Link Prediction

N DATASETS

We report the statistics of the datasets used for the empirical analysis of GNNs in Table 6. We report
the exact statistics of the autoencoder datasets in Table 7.
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N.1 GRAPH DATASETS

The Amazon computers dataset is a subset of the Amazon co-purchase graph (Shchur et al., 2019).
The nodes represent products on amazon and the edges indicate that two products are frequently
bought together. The node features are the product reviews encoded in bag-of-words format. The
class labels represent the product category.

The Flickr dataset is an undirected graph where nodes represent images uploaded to Flickr (Zeng
et al., 2020). An edge exists between the two nodes if the images share common properties such as
same user, geographic location or gallery. The node features are again bag-of-word representation
of the images. The labels are the tags of the images manually classified into 7 different categories.

Dataset Amazon Computer Flickr

Number of Nodes 13752 89250

Number of Edges 491722 899756

Average Degree 35.76 10.08

Node Features 767 500

Labels 10 7

Table 6: Dataset Statistics for Graph

N.2 AUTOENCODER DATASETS

Four diverse real-world datasets were utilized for our experiments: MNIST (LeCun et al., 2010),
Fashion-MNIST (F-MNIST) (Xiao et al., 2017), COIL-20 (Nene et al., 1996), and CIFAR-10
(Krizhevsky & Hinton, 2009), to comprehensively evaluate the performance of our autoencoder
model. MNIST, comprising 28x28 grayscale images of handwritten digits, serves as a foundational
benchmark for image classification and feature extraction tasks. Fashion-MNIST extends this by
offering a similar format but with 10 classes of clothing items, making it an ideal choice for fashion-
related image analysis. COIL-20 presents a unique challenge, with 20 object categories, where each
category consists of 72 128x128 color images captured from varying viewpoints, offering a more
complex 3D object recognition scenario. Lastly, CIFAR-10 introduces color and additional com-
plexity, featuring 60,000 32x32 color images across 10 object classes, catering to real-world image
analysis and deep learning challenges. Our experimentation across these datasets provides valuable
insights into the versatility and effectiveness of our autoencoder approach for diverse image analysis
tasks.

Dataset Classes Train Size Test Size Image Size Data Type

MNIST 10 60,000 10,000 28x28 (784) Grayscale

Fashion-MNIST (F-MNIST) 10 60,000 10,000 28x28 (784) Grayscale

COIL-20 20 1,440 - 128x128 (16384) Color

CIFAR-10 10 60,000 10,000 32x32*3 (3072) Color

Table 7: Dataset Statistics for AE
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