CS290D - Schedule home | schedule | project  

Weeks Topics Presenter   Notes
Week 1 (03/30/2015) Introduction      
Week 1 (04/1/2015) Neural Networks Fangqiu Han    
Week 2 (04/6/2015) Convolutionary Neural Networks Fangqiu Han   http://www.nlpr.ia.ac.cn/cip/liukang.files/coling2014.pdf
http://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf
Week 2 (04/8/2015) Word2Vec, GloVe Yu Su   Word2vec: https://drive.google.com/file/d/0B7XkCwpI5KDYRWRnd1RzWXQ2TWc/edit
Glove Video: https://www.youtube.com/watch?v=RyTpzZQrHCs&feature=youtu.be
Another related tutorial: http://emnlp2014.org/tutorials/8_notes.pdf
Week 3 (04/13/2015) More word representations Yu Su https://www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf
http://www.akbc.ws/2014/slides/weston-nips-akbc.pdf
Week 3 (04/15/2015) Question Answering Huan Sun   To merge slides from Stanford and Berkeley:
http://spark-public.s3.amazonaws.com/nlp/slides/qa.pdf
http://www.cs.berkeley.edu/~klein/cs288/sp10/slides/SP10%20cs288%20lecture%2024%20--%20question%20answering%20(2PP).pdf
Week 4 (04/20/2015) NLP Yang Li   Slides from https://www.fer.unizg.hr/_download/repository/TAR-02-NLP.pdf
Week 4 (04/22/2015) Knowledge Base Yang Li   Slides from http://resources.mpi-inf.mpg.de/yago-naga/vldb2014-tutorial/vldb2014-slides.pdf
Week 5 (04/27/2015) Paraphrasing Izzedine Gur   Slides from http://ir.hit.edu.cn/~zhaosq/paper/PA.pdf
Week 5 (04/29/2015) More Question Answering Huan Sun proposal due Summarization of recent main methodologies for QA, including open IE, semantic parsing, graph querying, feature-based, and embedding methods. Will prepare slides based on papers from UW, Stanford, JHU, UCSB, Facebook&MSRA ( http://emnlp2014.org/papers/pdf/EMNLP2014071.pdf ; http://emnlp2014.org/papers/pdf/EMNLP2014067.pdf )
Week 6 (05/4/2015) More NLP Yang Li   Entity extraction/linking, Relation extraction
Week 6 (05/6/2015) More Knowledge Base Yang Li   Slides from http://www.cs.technion.ac.il/~gabr/publications/papers/KDD14-T2-Bordes-Gabrilovich.pdf
Week 7 (05/11/2015) Deep Learning Fangqiu Han   Slides made from coursera and Deep learning tutorial in ICML 13' http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-icml2013.pdf
Week 7 (05/13/2015) Midterm     Midterm will cover materials taught till (including) May 4, 2015.
Week 8 (05/18/2015) Recurrent Neural Networks Semih Yavuz   Slides from second chapter of the tutorial, namely "Deep Learning for NLP without Magic", by Richard Socher: http://nlp.stanford.edu/courses/NAACL2013/NAACL2013-Socher-Manning-DeepLearning.pdf, and maybe introduce a recent paper "A Neural Network for Factoid Question Answering over Paragraphs" (http://cs.umd.edu/~miyyer/pubs/2014_qb_rnn.pdf) as a concrete work.
Week 8 (05/20/2015) Recursive Neural Networks Semih Yavuz   For the general overview of RNNs for sentiment analysis, I will use the following three sources: 1) A Note by Prof. Charles Elkan: http://cseweb.ucsd.edu/~elkan/250B/learningmeaning.pdf, 2) My own project report: https://www.academia.edu/6634023/Predicting_Sentiment_Distributions_with_Semi-Supervised_Recursive_Autoencoders, 3) Slides from the same source above. For a concrete work for which RNN approach achieved successful results, I will use the paper "Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions" by Richard Socher (http://www.socher.org/uploads/Main/SocherPenningtonHuangNgManning_EMNLP2011.pdf).
Week 9 (05/25/2015) Holiday
Week 9 (05/27/2015) Neural Models with Memory Jian Shi    
Week 10 (06/1/2015) Project presentation/demo      
Week 10 (06/3/2015) Project presentation/demo      
         
Week 11 (06/7/2015) No Class     Final report due